请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

全本小说网 www.qbshu.com,最快更新生命存在与心灵境界最新章节!

如何关系于其他之数项,只须对此为主词之数项为真。若此主词自身之涵义中,无此宾词之涵义,则此宾词不得对主词为真。此即见一数学命题,似必须为一分析的命题。如说三大于二,则此大于二之意义,似必须为三自身之所具,而可由“三”之意义中分析而出者。然数之自身,若说为由构造而形成,又可说为由次第加一,更综合之于以前之数所形成,而非只由分析其前之数之所成者;则由数而次第形成之数学命题,亦必有非由其先之数所合成之数学命题中,所可分析出者,而为不断增加于以前所有之数学命题之上,而综合地形成者。康德即依数之由不断综合而成,以说数学命题为先经验之综合命题者。然此所谓先经验之综合命题,在现代数学家则由其可以证明,而其证明之之道,不外本之于吾人先承认之数之定义与运用此定义之规则等,而谓其亦是分析命题。如二加二等于四,即可本来布尼兹之意,谓可由吾人对二与四之定义,加以证明。如由四之定义为三加一,三之定义为二加一,并依三加一之三,可以二加一代替之之规则;则四为二加一加一。而二之定义正为此一加一;更依二可代此一加一之规则,而四为二加二,再依移项之规则,而二加二为四。康德所举之七加五等于十二,亦可由此类似之方法以证明。凡数学命题之真者,应可证明,凡可证明者,必有为其前提之数学命题,而此前题之所由构成之数之概念或名项,必有定义,与为前题之前提之第一前提,是为公理。此定义本身,亦可视为一前题,而以定义公理为前提以推结论,必有推论之规则,亦即运用此定义公理之规则。则一切数学命题可证为真之根据,只在数之概念或名项,有如何如何之定义,与其最初设定之公理为何,运用定义公理或推论规则为何,而此等等皆可由追溯数学命题之如何次第证明,而加以发现者。由此而一切数学命题,亦即皆可由此以发见其中之数之原始定义,与所设定之原始公理及规则,而今更由定义、公理与规则,以推演出其涵义,即可更形成此一切命题。则此一切命题,自当为由此定义、公理、规则,所演绎出来之分析命题。

    此上之一说,乃由诸可证明,或已证明为真之数学命题,再返溯其如何次第证明而成立之说。然于此首须知吾人并非必须先知有数学命题,而可先只知有数,更由对数之关系之发见,始建立一数学命题。此由数与其关系以建立数学命题,则明可为一综合的历程。如吾人于七加五等于十二加以证明时,固可说其为分析的。然吾人先只知有七,而说其加五,乃等于十二,则此明是于吾人先所知之七之意义上,加一意义,此岂不可说为综合的?由此以观吾人之于二说其为加二等于四者,于三说其为大于二者,亦同是一综合的历程。其次,复当知吾人亦非必须于数学命题被证明为真之后,然后方思得一数学命题为真,或方思得一数学命题与另一数学命题之同时为真。吾人之由思一数学命题为真,更思另一数学命题之亦为真时,此中之思想历程,亦可只为综合的,而非分析的。譬如吾人谓二等于四减二,二等于六减四,此二命题同时为真。然此二命题,初不能互分析出。因“四减二”与“六减四”,乃不同之概念。于此二命题初同时为真,吾人亦初不必本数学中公理法,如由六、四、二等之定义及其他数学规则等,加以证明,然后知之。吾人所以知此二命题之同时为真,可唯以吾人于六有减四之运作,及于四有减二之运作,皆见其结果为二;以知之。吾人于是可由其一之真,以推另一之真,谓六减四等于四减二。此纯为逻辑之推论,亦为纯分析的推论。因此同时为真之义中,即有六减四等于四减二之义故。但在吾人未说其同时为真之前,而由四减二等于二,思及六减四等于二之时,则由四减二之思想历程,至于六减四之思想历程,却必为综合的。唯对六有减四之运作或演算,与对四有减二之运作与演算后,其结果皆是二,二等于二,由二可分析出二;而后吾人可说六减四等于四减二,而此六减四之等于四减二,乃可说是分析的。由此以观此整个之由六减四至四减二,至知其皆等于二,二等于二之一历程,即为先有综合后有分析之一历程,不能说其只为一分析的历程。在知其为分析的时,可说于“六减四”等于“四减二”,有证明;在未知其为分析的时,则无证明。然在无证明之时,“六减四”与“四减二”,已有同一之数值,“六减四等于四减二”已为真。此中吾人之由“六减四”,思及“四减二”,即综合的思有同一之数值之“二种数之连结关系”。此“六减四”与“四减二”之二种数之连结关系,并不同类。然依此二种数之连结关系,以有二分别的演算之后,知其数值皆为二,二等于二,则为同类。而此一整个之历程,即是由先思其中之“六减四”与“四减二”之不同类,更由演算以见其值之同类之历程也。

    循此上之说,以观数学之命题之次第出现于人心,即不能说其自始即是出现为一分析命题,而可出现为同时并真之诸命题。吾人之由一命题,以思与之并真之其他命题,其数可无定限。如吾人可由“四减二”,而知其与“六减四”、“八减六”、“一加一”、“四之平方根”、“八之立方根”……等,其数值皆是二,而人说此等等之值为二之诸数学命题,即同时并真。而此“二”即分别为此诸数学命题得同时并真之共同根据。然吾人于此,却不必先有其证明。此证明,初唯由吾人之先回思:此二为一加一所构成,四为二加一加一所构成,此六为四加一加一所构成,四又同为二之乘方所构成,八为二之立方所构成;既知此不同之构成数之方式,可有种种不同数之出现,与不同数之诸关系之出现;更逆此构成之历程,而由此诸关系,各观其反关系,更顺此诸反关系而演算,方可知:四减二、六减四、四之开方、八之开立方,皆等于二,遂可谓“说此等等之值为二”之诸数学命题皆真。此不同之构成数之方式,为综合的。则逆此中之构成历程,而由其中之关系,见其反关系,而有之不同之演算方式,皆为综合的。今吾人构成数之方式,若再加一个,则演算之方式,亦可再加一个。若对吾人之综合的构成数之方式,不能加以限定,则对所增加演算之方式,亦不能加以限定。在综合的构成数之方式有限定处,吾人可反省出其如何构成,而知其构成之规则与基本的概念或名项之定义、基本的公理,则此所构成之一切数,与数学命题,皆可以此规则概念公理等,加以证明。凡用不同方式构成之种种数,若吾人能分别知其规则、概念名项之定义、公理,则可知其规则、概念、名项之定义、公理,之是否相类,并知此所构成之种种数,当如何加以演算,方可有共同之值;而后人于说其值之共同与否之命题,乃皆可加以证明,并证明其为由此诸公理、概念、名项之定义、规则中所可分析出者。此即数学中之公理法之所以可用。凡用公理法所证明之数学命题,亦皆可说为分析的。然一切公理法所设定之公理,必为有特定内容者,其涵义亦为有特定内容,而有其所不涵之义与排斥之义者。则此一定之公理等,所能推出之全部数学命题之系统,即仍为限于一定范围,而对此范围外之命题,则不能有所说者。若欲有所说,则须本于此公理等原所不涵之义及排斥之义,而造成系统内之矛盾。吾人即不能用此公理法,以谓任何由公理法所决定之系统之外,无其他真的数学命题。实则,自人之综合的构成数之方式,可无限定,其演算之方式,亦可无限定处看,则其次第依加一而构成之数之“数的关系”,而增加之演算方式,所成之数学公式、数学命题,即只能为一次第之综合的历程。而此中次第构成之数学公式、数学命题,亦即必有具数学的真理,而非先根据已有公理等,加以推演出或加以证明;而唯是由人之直观一数学关系之存有而构成,亦唯由人依之而演算之结果,为某一数值,而后知此公式命题之对此值为真者。数学之世界之所以可有不断之创造性的发现,恒正赖于此。如人由知二等于一加一,至知二为四之平方根与八之立方根,即对数之真理多一创造性的发现,多一综合性之思维。凡知一数为与其他数有某一关系之数,至知此同一之数又为一与其他一数,有另一关系之数,而知分别由其不同关系,以形成真的数学命题,皆是对数之真理之创造性所发见,或一综合性之思维也。

    吾人若了解吾人对一数与其他数之关系之外,更可由综合的思维,以创造地发见此同一之数与另一数之另一关系,则此同一之数所有之此二关系,即不同类,而二关系中皆有此数,则为同类。数学中之创造的发见,即皆为由同类之数,以发见其不同类之关系,而由不同类之关系中,发见有同类之数之事。人在数学中,恒有只见关系之不同类,而不知其有同类之数之情形,亦有见同类之数,而不知其可入于与他数之不同类之关系之情形。故人恒于此持举某一数,而问:其与在何种之不同关系下之某其他数,可经由某一之演算方式,以见其为同类,而等待此不同关系下之其他数之呈现于人心。此正有类似于人之对现实事物,虚举虚持一数,以等待可用此数于其上之现实事物,而不知此事物之情形。但又略不同。此乃是虚举虚持一数,以等待其可能与之成为同类之某其他数,而不知此数为何之情形。此即形成一数学中之问题之情形。如吾人问:任何偶数,是否皆可分为二素数之和?此一数学之问题,即问任何偶数,是否皆有二素数之和,与之同值,而在有此同值上,与之为同类。又如问:是否有一奇数为一完全数(Perfect Number?)所谓完全数,即数为其一切除数之和者。如六之除数有一、二、三,而六为一、二、三之数之和,故六为完全数。又二十八之除数,有一、二、四、七、十四,而二十八亦适为此诸数之和。故二十八为一完全数。然二十八是偶数。 [5] 今问是否有一奇数,亦为一完全数?则初为人所不知,而亦只为一数学之问题。然此问题,亦即问:除偶数之为之完全数者之外,是否有奇数亦为完全数,而与偶数之为完全数者,为同类?凡此问一类之数,是否其外更有与之相类之数,皆为只直接分析此一类之数之意义,所不能加以答复,而必待人之求于其外之综合性的思维者也。

    吾人以上之论数学,在根本义上实极简单,即人若纯自其数学命题已证明者上看,则对此一切已证明之数学命题之如何证明,加以反省,人皆可为之造一公理系统;而以此一切命题,皆本此诸公理、概念或符号之定义与推论原则,所演绎出之分析命题。但以数学中之命题,有未被证明而仍为真者。而人之知其为真之时,亦初非必然已有其证明者。则数学之命题,不能说为皆由此公理法,所已决定其真或假,亦非可只视之为由公理、概念符号之定义等所演绎出之分析命题。而当自吾人之可由一真数学命题,以更求知与之同为真、非由之直接推出者之命题,即见此数学中真命题之次第发见,依于一综合性的思维,亦不断有综合的真命题之形成者。至于人在数学之思维中,于一真命题,更求其证明之事,亦即不外求得与此一真命题同时为真之其他命题之结合,以见其有同一之真值,而在有同一之真值上为同类之事。今克就一真命题得证明之处以观,则凡得证明之命题,即皆如由为其前提之原始之公理等演绎出之分析命题者。于是此数学之心灵之由知数学之诸真理,更求其证明之历程,即为一“由综合不同类之命题,更求见其为同类,而为可互相分析而出之命题”之历程,而其所运之境,即为以综合与分析,交相为用,以于数学命题之不类者中,观照其相类者而成之境。而对此境中之命题,若只以之为综合命题,由直观而得,与只以之为分析命题,由逻辑之推演而出,或于其中只见有一一不相类之命题,与一一皆为同类之命题,即皆为一偏之论,而未见此数学命题之世界,为观照心所运之不类而类之境者也。

    七 几何学与观照凌虚境

    几何学别于数学。数学之基础在一般之自然数,几何学之基础在一般之形量。形量有范围,即有区域,区域之方向,为形向。人之知构造自然数之系列,更于一一时间之段落地位中,应用一一数于所经验之事物,与此事物之次第生起,皆是在一次第之时间历程中。人之知一物有形量,除于时间中知之外,更可同时直观一形量之全体,于空间之某一地位之中。然数之构造与应用,在时间历程中,无碍于此所构造出之数,可遍用于一切时间空间中呈现之事物,而有其超时间亦超空间的普遍意义,以为人之观照心之直接所对,而不见“数”之在时空;亦如人之直觉一形量之全体,初乃于空间之某一地位中直觉之,无碍于此所直觉之形量,可遍用于一切空间时间中呈现之事物,而有超空间,亦超时间之普遍意义,以为人之观照心之直接所对,而不见此形量之在某时空。几何学之不能说只为一空间之学,亦如数学之不能说为一时间之学,而当说为:由物在空间中邻次呈现,而人知构造种种形量,将此种种形量,自物与空间游离脱开,而四无依傍,以更观照形量间之关系之学。如数学之为由事物在时间相继呈现,而人知构造种种数,将此种种数,自事物与时间游离脱开,而观照数与数关系之学。故此中之观照心,皆在时空之上一层位运行,亦皆在吾人所谓感觉互摄境之上一层位运行,其应用此所知之数之关系与形量关系,于时空中之事物,则为其居上层位,以通至其下层位中事物之事。吾人固不可以有此事,而自下观上,以谓数学、几何学为时空之学,然亦不碍吾人之说此数学几何学之观照心灵,乃依时序、空位等,以形成其观照之所对,而更观照其关系所成之学也。

    在人观照形量关系时,此形量之大小关系,似与数之多少关系相类。形量之可伸缩,如数之可加减;形量之可分合,如数之可乘除;形量之可相等,亦如数之可相等。形量之有其大小相等之关系,可容人知其关系,以定出几何公式、几何学命题,而可本之以对形量有伸缩分合之运作,以化一形量为另一形量;亦如数间之有多少相等之关系,以定出数学公式、数学命题,而可本之以对数有加减乘除之运作,以化一数为另一数。任何形量自身,至少可说是一形量;则此数之一,即可用于形量。由此而吾人如对一有大小之形量,设定另一形量为一单位,而以之计算此形量中所包涵之诸单位,即其中所包涵之诸一;则一形量之大小,即皆可以数之多少,加以表示。然任一形量中所涵之单位形量,又皆可伸缩,而变大变小,则当此单位变更之时,吾人以较少之数说之者,皆可以较多之数说之,以较多之数说之者,亦可以较少之数说之。由形量之单位之大小可伸缩,则对任一形量,皆可设定一单位,以计量之,使此形量等于一定数之某单位。任何一定之数,亦皆可由人所设定之形量单位之伸缩,而成一可以应用于任一形量之数,而任一形量,即皆可分为任何数之诸形量单位。如一形量等于一,此一形量,同时可以任何数除此一,所成之分数,表其一单位之量;而此一形量,即等于此诸单位之量之和,亦即等于再以此分数中之分母,乘此分数所成之乘积。由此而吾人可说任一形量,皆可以任何数计量之,而应用任何数以说之。此中之任何数,各为一定数,而彼此不同类。然在其可应用于一形量处,则又为同类。在单位不同之情形下,以一数分别用于不同之形量,而见此不同形量,皆可以此数计量之,而应用于其上以说之之时;则此诸形量,在形量上为不同类,而在其可以此数说之之时,即亦为同类。由此形量与数之交相为用,而一形量,即可化一切不同类之数,为同表此一形量之数之类;一数,亦可化一切不同类之形量,为同可以此一数表之形量之类。形量与数,即互为一“使不类者表现为相类者,亦使相类者表现为不相类者”,而“使类者兼为不类,不类者兼为类”之一原理。若有数而无形量,或有形量而无数;则一切数虽可由其自身之加减乘除,以由不类而类,然却不能有此由一切数之同可用以表一形量,所看出之一切数为同类;形量自身虽可由分合伸缩而成同类,亦无此由一数之可用于一切形量,所看出之一切形量之为同类。故此数与形量之交相为用,即在天地间增加一于不类见类,使类表现于不类之原理者也。

    形量虽皆有数,数亦皆可用于形量,以有“形量之数”之概念;然形量之概念本身,毕竟与数之概念不同其类。数以多少关系为本,形量以大小关系为本。人说多少时,可进而知多者大,少者小,此乃化数为量之后之事。如不化数为量,不说此多者大与少者小亦可。人说大小时,亦可进而知大者多,小者少。此乃以数定量之后之事。若不以数定量,则不说此大者多,小者少亦可。人于一形量,设定一更小之单位,计其单位之数,而以数定量,乃是于一整体无内在分别之形量,造成一分别。则反之,而忘此中之单位之数,还只观之为一量,即由分别,再至无分别。故于大小说多少,即将无内在之数之分别之一大一小者之中,更起一数之分别;将多少化为大小,即将有内在之数之分别之一多一少者,化为无此数之分别者。形量不以数定之时,虽无内在分别,然一一形量之大小不同,仍有此大小所成之外在之分别。此大小等分别,在不凭数以设想之之时,即只为大者能包涵小,亦能掩盖小者,而小者不能包涵大者,掩盖大者之别。二物之大小之量,能互相包涵,亦互相掩盖者,则称为有同大同小之量或等量者。此形量,在不以数加以分别时,仍可自有其大小等之分别,即见数之分别,为人所泯除之时,形量之分别,仍不可泯除。人超越数之世界之分别之后,仍有一形量之分别所呈之世界分别在。在此义上,则形量之分别,乃较数之分别,为高一层次之分别,而更难于加以超越者。人之欲超越此形量之分别,若只取化形量为数之途,则为落到下一层之数学的几何学或量度的几何学之思想。纯由形量自身看其分别如何可由形量之伸缩分合,而成为等量,以通贯各不同之形量,而于其分别中见无分别,则为纯粹之几何学或描述之几何学,与投影之几何学之思想。此形量之世界之可视为上一层位之世界,更可由以数定量之量度几何学中,恒发现有不能以确定之有理数计之形量而说。如直角三角形之勾方加股方等于弦方。此中如设定弦方之量为四,勾方股方之量各为二。则勾股之边之长,不能以有理数计量,只能说其为 之无理数。此无理数所规定之量,则为不能确定的计算出者,此中之勾股之边,自各是一形量。其形量之乘方之和等于弦方。此乃一形量自身间之相等之关系,而可由几何学以证明其必然如此者。此中,若吾人根本不欲以数定勾股二边之长,则无此无理数之出现。吾人若分别就勾或股之量,可以任何之数定之而观,亦非必以无理数定其边之长。如吾人亦可设定勾股之边之长各为二,则二为有理数。然当吾人以勾股边之长为二时,勾方股方各为四,则弦方为八,而弦之长为8,又为无理数。人仍不能逃此一无理数之应用。此则由于在数之世界中,一数之乘方加另一数之乘方之和,不必为一确定的有理数之乘方,而此和,即无确定的有理数,为其方根;而一数之有有理数为方根者,再视之为二数之和,此二数亦不必皆有有理数为其方根之故。此乃由数之构造之原理,原非皆本于数之自乘之乘方之原理而构成,而兼依于加一数于一数或二数相乘而构成,即不能无此无理数之故。此可参考上节所说。然此无理数在数之世界中,亦有其一大小之关系。故人亦可以不同之无理数,表示不同之大小之量。故勾股之量为以 表之者,其量乃小于以 表之者。然过此以往,则无理数毕竟不能以之定一形量中之单位之数,而对人之定单位之数之目标,乃无所用者也。

    此无理数,虽不能用以定一形量中之单位之数,然任何形量,可以无理数表示者,亦皆可变换其定量之单位,以有理数表示之,而可见此以无理数表示者,之等值于一以不同之单位定量,而以有理数表示之量。则数之世界中,虽有无理数,而量之世界中,则无一量之自身,可称为属于一无理数之无理量。纯自量之世界看,则一切量若不以无理数或有理数表示,其自身间,自仍有其大小或相等之关系,可由其量之相包涵与否之关系,而直接加以规定者。此即见量之世界,如浮升于数之世界之上一层位,而独立存在,以为一纯粹之几何学或投影几何学之所对。

    此纯粹之几何学,可只以观种种形量之大小相等之关系为事,而构造出纯粹之形量概念,如点、线、面、体、三角形、圆形、方形、球形、立方体等,而见其相互之包涵与否等关系。依此等关系,对形量加以伸缩分合之几何学之运作,则为使各不同之形量,由不相类化为相类,由有分别以成无分别;或由相类而化为不相类,以由无分别而有分别;以使“一切形量出入于类与不类,分别与无分别之间,亦使一切不类而相分别者,皆由一无分别而相类之中而出,再还入其中”之枢纽。此正如在数学中之加减乘除之运作,为使一切数化为等值,更可由移项而相减,以等于零,而于此零中出入之枢纽。依此对形量之伸缩分合,以看一几何学心灵所运行之世界,即亦可说为一观照之境,而非可视同现实存在事物之境,亦非纯为人之主观自由构造之境,复非自为一超越的实在之境,再非只为一由几何学之概念或名项之定义公理,或推论规则,所合成之一几何学的公理法,所演绎出之一几何学的分析命题之系统矣。

    此几何学心灵运行之境,非可视同现实存在事物之境,可证之于几何学中之形量,皆可用于任何现实事物,或无现实事物之处。人亦可思一形量,而虚提虚举此形量,以观照一切具此形量之事物,以至形成一以此形量之概念,观整个宇宙之哲学,如以直线进行或圆周进行观宇宙之哲学;而几何学中之概念内容,更明非必现实事物之所实有。几何学中之点线面体之概念,可纯由吾人之几何学的心灵,由任一设定之有量之形为起点,而依一定规则,向不同方向之空间伸展或缩进而形成。如由一点直向一方向前伸,而成直线;环绕而成圆,再将一直线向另一方向,平等横伸成面;纵伸此面成体,再缩此体成面,缩面成线,缩线成点。此皆人之所不难设想而理解之构成几何学概念之历程也。

    然人之先胶执于现实事物之形量,以观此诸几何学概念之形成者,恒欲于现实事物之形量中,求此诸概念如何自其所观得之现实事物之形量中,次第抽象构造而出,则可有种种之问题。如先谓现实事物,皆是一有形体者,则面线点皆只是由形体中抽象而出者。然人如何可由一有体之形体,抽象出一无体之面、无宽之线、无长之点?自有体之形体之物抽出者,岂不可仍只有一有形体者?又吾人如何可想像无体之面、无宽之线、无长之点之存有,亦是问题。于是有哲学家谓此纯面线点,只是一极限之概念。此一极限处之面线点等,只是吾人可次第向之接近,而永不能接触者。如数学中之谓在有无穷次序之实数之全部系列之中,无论吾人如何向其极限进行,以求一与此极限之数差别更小之数,总有一与此极限之数,差别更小之正数。如前一数在此数之系列中之次序,可以N表之,即总有大于N之n次序之数,其与此极限之数之差别更小者。由此而人可说:对任一无论如何小的为正数之实数E言,皆有一大于此一正数之次序之整数N之次序n之实数,属于此系列之一项,可名为a n 者,其与极限之数之差别,更小于此E者,为极限之定义 [6] 。由此而人可说,面是吾人在体之一度量上,次第缩减,所辐辏之一极限,线或点为在其二度量,或三度量上次第缩减之一极限,而实皆永不能达之一极限,即皆唯是一虚构,以表此诸极限者。在实际世界中,固无无高之面,无无高与宽之线,亦无无长宽高之点也。然此说唯由人之必由有形体之现实事物之思维,以理解此几何学中之概念而形成。其意唯在对此诸概念,由其与现实事物之形体之关系处而了解。故转使人觉多曲折而难于了解。实则此诸概念,皆可循上文所提及之意,谓由人之几何学的心灵,以任一形量为一运动之始点,以形成。此任一形量为一运动之始点,即是点。其向一方向而伸,即成一直线,再将此直线,向另一或二方向而伸,即成面、成体;可伸者,即可缩,而再复其原。则体自可缩为面、为线、为点,而此点即原初之伸之始点。此始点,初可正为一有形量之物。然此中之线面体等,乃依于人之以此有形量之物,向一方向或二方向或三方向,而伸之所成,则初不关此有形量之物之自身。此中之线、面、体,即所以表此伸之为向一方向,或二或三方向等,而非表此为始点之有形量之物。则其由伸而缩,所缩者亦是此诸方向之伸,而缩回至一点,无向任何方向之伸,即无向任何方向伸而成之长宽高之量,而只有无长宽高之量之无量之量。此一点之无量之量,可称为一量,如零数之可称为一数。此一点之量之可称为无一切量,亦如零数之可说为其中无一切数。吾人之理解零之数,乃透过其中无其他数而理解,吾人之理解点之量,亦透过其中无其他形量而理解。然若自始无数之成,更观其被减而消除,则亦无零。若自始无形量之伸,而更观其被缩而消除,亦无长高宽之量之点。在此义上,零即为通过数,而消除数之数,而无数者,点即为通过形量,而消除形量之量,而无量者。故吾人可由零以观照其所以成零之故,在数之被消除;亦如吾人之可由点以观照其所以成点之故,在形量之被消除。零可为观一切数之相消除之一观点,如点之可为观一切形量之相消除之一观点。以零定事物之数,则事物之为零类者,非事物;以点定事物之量,则事物之只为一点者,亦非事物。存在之事物之量之不得为点,亦如存在之事物之数,不得为零。此亦同时证明此点与零之非具体事物,而只存于观照此零与点,或以之为观点,以观一切形量与数之相消除之心灵中者也。

    此几何学中之概念如点线面体等,固由人心之构造而出。然既构造出,其间又有一定之必然关系,为一切人心或有心能观照之者,所同可次第知者。此必然关系,即有其客观意义。故人之循此点线面体之关系,有此客观必然意义看时,即可视此点线面体与其关系,合成一超越实在的形量关系之世界。然此说之不能立,亦正如数学中之超越实在论之不能立。因此点线面体与其关系,可为有心而能观照之者,所共次第知,而对之为客观必然,并不能证明其能离此次第知之之心灵,而独立为实在。其客观必然,亦唯对此知之之心灵之主体,为客观必然。至于其所以不能自成一客观实在之形量关系之世界之故,亦可自此中之形量关系,其非相等者,必有一互为对反关系相等者,则可互相包涵,亦互相掩盖,而相消除处说。盖凡有互为对反之关系之形量,人皆可循其一关系之反关系,对之加以伸缩分合,而还至一形量,以消除其与他形量之此关系。任一形量与其自身之形量相等者,则皆可以其自身之量减其自身之量,而使之成无量之一点。此正如数之不相等者,必有反关系,其相等者可由相等而相减以等于零。一数与他数有对反关系者,皆可循此反关系,以对他数加减乘除,以还至一数之自身;更以此数自减其自身,以等于零。零可说为数而无数者,点可说为量而无量者。无数,则无数之关系之独立实在,无量,则亦无一切量之关系之独立实在,而皆不可自成为一超越的客观实在矣。

    复次,几何学亦不可只视为本几何学之概念、名项之定义、公理、推论规则,所成之公理法,所演绎出之一几何学命题或几何学公式之系列,亦不可说几何学命题皆分析命题。此概念、名项、公理、规则,乃人本其已有之几何学公式或几何学命题,而更反省其所自形成时之所发现。既发现之之后,更本之推演,自可再得此诸公式命题,而见其为分析的。然几何学之思维,初自为一“发现一形量与其他形量之关系,而见在不同关系下之不同形量,可由其伸缩分合,以成同一形量”之综合的历程。谓一形量与其他形量,有某关系,必对此一形量,加以一“关系于他形量”的宾词。此即对此形量之意义,有一增加的了解,而形成一对此形量之综合的命题。人谓一形量同时与其他形量有不同关系,即可同时循此不同关系,以同时建立不同的几何学公式或几何学命题,而使人可由其一之真,以见及另一之真,亦为一综合之历程。如吾人由直角三角形之弦之平方,而知其等于勾之平方加股之平方之量,显然为一综合的历程。此直角三角形中之勾股定理,在几何学中有种种之证明法。此证明之事,似皆为就已有之前提而分析出之事。然吾人亦非必须经此分析,然后能知此弦方与勾股方之和,有此等量关系。此等量关系,可初只由直觉之综合而得。此如二对角之相等,非必须由吾人之知此二对角皆为平角之减一角而成,方知其相等,乃人为原可直觉其对称而知其相等者。在直角三角形之形成中看,吾人可说直角三角形之弦,即由勾之线之一端,向股之线所定之股方向,运动伸展以达股之线之一端而成。吾人又可先设定勾股弦之线,各与其平方同时展现,则当人初只见有勾之线时,只有此勾之平方之展现。唯当此勾之线之一端,向股之线所定方向,运动伸展而渐成弦时,乃有此弦之平方之渐展现。然此弦乃由人依勾之线,向股之线运动伸展而成。勾有此向股之线之运动,股之线亦即渐展现于人前,而此股之线之平方,即与此弦之平方之展现,同时展现。当人转而将此弦循股所定之方向,再缩回其运动,以再同化于勾时,此股与股之平方又全隐;则证由弦之再同化于勾,而弦之平方同化于勾之平方时,其所缩减之量,同于股之平方之量;而弦之平方之量,即必当为勾之平方之量,加股之平方之量。此则不待证明,而人亦可直观弦方等于勾方加股方之一道。而实则人如自始无此类之直观,则何以会忽然念及此弦方之有等于勾方股方之可能,而更求证明之事,即不可理解。而人在几何学中之有种种创造性的发见之公式,亦皆当初是由人之有综合性的直观一形量之可能与其他不同形量,有等量或其他关系,而后此公式之发见为可能。此则皆不能依于人之就其原所知之形量及其公式,直加分析,或本之演绎,而可有者也。

    然几何学之诸公式虽由综合性的直观而后发见,然亦不碍此几何学之诸公式形成之后,人可反省出其所由成之根据,其所本之概念,名项之定义、公理、推论规则等,而以公理法加以演绎,以使之成为一分析命题之系统,如数学中之命题之皆可由公理法,以使之成由数学之公理等演绎出之分析命题之系统。然人在几何学中,可有不同之概念与公理等之设定,而有不同之几何学,如欧氏非欧氏等,亦如数学中之亦可依不同之公理等,而有不同之数学系统。不同之公理等所定之不同数学系统,可由其公理等之原始意义之同异,而加以关联,以见不同数学系统中之公式之相对应而皆真。几何学中之不同之几何学,亦可由其公理等之原始意义之同异,而加以关联,以见不同类几何学中之公式之相对应而皆真。不同之数学系统,与不同之几何系统中之公式命题,即未尝不可互相转换,以见其有不同类之意义,而亦可有同类之意义之处。然人可依不同公理等,而有不同之数学几何学之系统,更可观其类与不类,则又见人之数学几何学之心灵,能综合地并观此不同公理等,与其所形成不同的数学几何学之系统,而位居于其上一层位;亦见任何由公理法所定之数学几何学之系统,皆不能谓其系统之外,无数学几何学之真理。然人无论如何造不同之数学系统,根柢上终不能离数之关系。人无论如何造不同之几何学系统,其根柢上不能离形量之关系。一切数之不同,皆可由加减乘除之运作,使之同;一切形量之不同,亦皆可由伸缩分合之运作,使之同。在此点上,一切数学系统即为彼此同类,一切几何学系统,亦彼此同类。在不同类之数或不同类之形量,皆可由人之运作,而使之同类一点上,数与量亦为同类也。在数学中有由减而成之负数,在几何学中有由缩而成之负量。在数学中有负数之平方根之虚数,在几何学中则凡在一坐标中,其为负号所规定之诸方向中之平方,其根之量,即皆可称为一虚量。数学中有函数。当一数为其他变数之函数时,可随此其他变数,以有不同之值,而其值可无定。而在几何学中,则有投影几何学。在投影几何学中,当一形量对一变化之形量投影,则其影亦有种种不同之形量而不定。吾人能加负数于正数,以观其数之和,即如于数减数之可归于无数之零。吾人如加相当之负量于正量,以观形量之和,即如于量减量之可归于无量之点。于一切可能有之正数,加可能有之相当的负数,则一切数归于无数之零。于一切可能有之正量,加可能有之相当的负量,则一切形量归于一无量之点。由数之可随他数,而变为任何数,一形量亦可由投影,而显为任何形量,则见一切数之可化归于一类之数,一类之数可化归于一切类之数;及一切形量可化归于一类之形量,一类之形量之可化归于一切类之形量。如人之以方形绘于眼镜之上,而一切形量投其影于眼者无不方,以圆形绘于眼镜之上,则此投影又无不圆。而就一切形量皆可由伸缩分合,使之成方、成圆而观,则任一方或任一圆之连于“对其外之一切形量之可能有之伸缩分合之事”,即可尽天下之形量,而化同之于此一方或此一圆而无余。若再缩此一方或此一圆于一点,则此一点,即虚涵一切形量之负量于其中,而可由之以观照一切形量之虚涵于此一点之中。此皆见几何学中之可化一切形量,以成为一与人心遥相距相望之观照凌虚境者也。

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”