请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

全本小说网 www.qbshu.com,最快更新物理学的进化最新章节!

    1.场的图示

    在19世纪下半叶,革命性的新观念被引入了物理学,它们为一种不同于旧力学观的新哲学观开辟了道路。法拉第(Faraday)、麦克斯韦(Maxwell)和赫兹(Hertz)的研究成果发展了现代物理学,创造了新的概念,形成了一幅新的实在图景。

    现在我们就来阐述这些新概念给科学带来的突破,以及它们是如何逐渐清晰起来并获得力量的。我们将对发展线索进行逻辑重构,而不太在意时间上的先后。

    这些新概念的起源与电现象有关,但第一次介绍它们时,从力学入手要更简单。我们知道,两个粒子会相互吸引,这种吸引力与距离的平方成反比。我们可以用一种新的方法来描述这个事实,尽管这样做的好处一时还不清楚。下图中的小圆代表一个吸引体,比如太阳。实际上,应该把这幅图想象成空间中的一个模型,而不是一张平面图。于是,图中的小圆其实代表空间中的一个球体,比如太阳。把一个被称为检验体的物体置于太阳附近,它将被太阳吸引,引力沿着两个物体中心的连线。因此,图中的线表示太阳对检验体各个位置的引力。每条线的箭头表明这个力指向太阳,也就是说这个力是引力。这些线都是引力场的力线。这暂时还只是个名称,无须进一步强调。这幅图有一个典型特征,我们将在以后强调。力线是在没有物质的空间中构造的。所有力线,或者说场,目前只表明一个被置于球体(场就是为它构造的)附近的检验体会如何行为。

    在我们的空间模型中,力线总是与球面垂直的。它们都是从一点发散出去的,因此在球体附近最密,越远越疏。如果与球体的距离增加到2倍或3倍,那么在我们的空间模型中,力线的密度将会减小到1/4或1/9。因此力线有两重目的:一方面显示了球体(例如太阳)附近的物体所受力的方向;另一方面,空间中力线的密度又显示了力如何随距离而变化。场的图案描绘了引力的方向及其与距离的关系。由这样一幅图可以领会引力定律的含义,就像从对引力作用的语言描述或者精确简洁的数学语言中可以领会引力定律的含义一样。这种场的图示也许显得清晰而有趣,但没有理由认为它标志着任何实际进展。很难证明它对引力有什么用处。也许有人觉得,不妨认为这些线不仅仅是画,而是有真实的力的作用沿着它们通过。这样想象当然可以,但那样一来,必须假定沿着这些力线的作用速度是无穷大!根据牛顿定律,两个物体之间的力只与距离有关,与时间无关。力从一个物体传到另一个物体竟然不需要时间!但凡明白事理的人都不会相信速度无穷大的运动,因此,认为我们的图不仅仅是模型不会有什么结果。

    不过,我们并不准备讨论引力问题。我们介绍这些,只是为了对电学理论中类似的推理方法作出简化的解释而已。

    我们先来讨论一个很难作力学解释的实验。假定电流通过一个线圈,线圈中央有一根磁针。电流通过的瞬间会产生一个新的力,这个力作用于磁极,并且垂直于线圈与磁极的任何连线。如果这个力是由一个作回转运动的电荷产生的,那么正如罗兰的实验所表明的,这个力与电荷的速度有关。这些实验事实违反了一个哲学观点,即所有力都必须沿着粒子的连线起作用,且只能与距离有关。

    精确表达电流作用于磁极的力是非常复杂的,事实上比表达引力复杂得多。然而,就像对引力那样,我们也可以尝试把这种作用视觉化。我们的问题是:电流以什么样的力作用于被放置在它附近的磁极呢?要想用语言来描述这种力是相当困难的,即使用数学公式也一定非常复杂和别扭。最好是用绘有力线的图或空间模型把我们关于作用力的一切认识都表示出来。困难之一在于,一个磁极总是与另一个磁极关联着存在,它们共同形成了偶极子。不过我们总是可以设想磁针很长,只须考虑作用于距离电流较近的那个磁极的力,另一极距离太远,作用于它的力可以忽略。为避免混淆,我们假定距离导线较近的磁极是正的。

    作用于正磁极的力的特性可以从下图看出来。

    如图所示,导线旁边的箭头表示电流从高电势流向低电势的方向。所有其他线都是属于这个电流的力线,都处在某个平面上。表示电流对正磁极的作用的力矢量的方向和长度都可以从图上看出来。我们知道,力是矢量,确定力必须知道它的方向和长度。我们主要关注作用于磁极的力的方向问题,这个问题是:如何从图中找到空间中任一点的力的方向?

    要在这样一个模型中看出力的方向,不像之前的例子那么简单,因为在前面那个例子中力线是直线。为了澄清步骤,下图中只画了一条力线。如图所示,力矢量位于力线的切线上,力矢量的箭头和力线上的箭头指着同一方向,即在这一点上力作用于磁极的方向。一张好图,或者说一个好的模型,也能把任一点上力矢量的长度表示出来。在力线较密亦即靠近导线的地方,力矢量必须较长,而在力线较疏亦即远离导线的地方,力矢量必须较短。

    这样一来,力线或场就能使我们确定在空间中任一点作用于磁极的力。眼下,这乃是对我们精心建构的场的唯一辩护。知道了场表示什么,我们会带着更浓厚的兴趣来考察对应于电流的力线。这些力线都是围绕着导线的一些圆圈,所处的平面垂直于导线所在平面。从图中领会到力的特征之后,我们再次得出结论:力的作用方向垂直于导线与磁极之间的任何连线,因为圆的切线总与半径垂直。我们对作用力的全部了解都可以在场的构造中得到概括。为了简单地描述作用力,我们把场的概念置于电流概念与磁极概念之间。

    任何电流都与一个磁场相联系,也就是说,通电导线附近的磁极总是受到一个力的作用。顺便提及,这种性质使我们能够制作一种灵敏的仪器来探测电流的存在。一旦知道如何从电流的场模型来看磁力的特性,我们就能画出通电导线周围的场,以表示磁力在空间任一点的作用。我们的第一个例子是所谓的螺线管。事实上,它就是下图所示的一卷导线。我们希望通过实验来了解与流经螺线管的电流有关的磁场的知识,并把这些知识融入场的构造中。该图已经把结果描绘出来了。弯曲的力线是闭合的,它们以电流磁场特有的方式包围着螺线管。

    我们也可以用描绘电流磁场的方式来描绘磁棒的磁场。如下图所示,力线从正极指向负极。力矢量总是处于力线的切线上,且在磁极附近最长,因为这些地方力线的密度最大。力矢量表示磁棒对正磁极的作用。这里场“源”是磁棒而不是电流。

    这两幅图应当认真比较一下。第一幅图是流经螺线管的电流的磁场,第二幅图则是磁棒的场。我们忽略螺线管和磁棒,只看它们外面的两个场,就会立刻注意到,它们的性质是完全一样的,两者的力线都是从螺线管或磁棒的一端指向另一端。

    场的图示结出了它的第一个果实!倘若不通过场的构造来揭示,我们就很难看出流经螺线管的电流与磁棒之间有这么大的相似性。

    现在我们可以对场的概念进行更严格的检验。我们很快会看到,场并不只是一种关于作用力的新图示。让我们暂时假定场以一种独特的方式刻画了场源所规定的一切作用。这仅仅是个猜测。它的意思是,如果螺线管与磁棒有同样的场,则它们所有的影响也必定相同。也就是说,两个通电的螺线管会和两根磁棒一样彼此吸引或排斥,引力或斥力只依赖于它们的相对距离,这与两根磁棒的情况完全相同。它还意指,螺线管与磁棒之间也会像两根磁棒那样相互吸引或排斥。简而言之,通电螺线管的所有作用都与相应磁棒的作用一样,因为只有场能起这些作用,而场在这两种情况下有相同的性质。实验完全证实了我们的猜测!

    倘若没有场的概念,发现这些事实将会多么困难!要把通电导线与磁极之间的作用力表示出来是非常复杂的。如果是两个螺线管,我们就不得不研究两个电流的相互作用力。但如果借助于场的概念来研究,既已发现螺线管的场类似于磁棒的场,我们便立即可以注意到所有这些作用的特性。

    我们现在更有理由把场看成某种东西了。就描述现象而言,似乎只有场的性质是最重要的,场源的差异并不重要。场的概念的重要性在于能够引出新的实验事实。

    事实证明,场是一个非常有用的概念。起初,它只是为了描述作用力而被置于场源与磁针之间的某种东西。它被视为电流的“代理者”,电流的一切作用都通过它来完成。但是现在,代理者也充当诠释者,它把定律翻译成一种简单易懂的清晰语言。

    场的描述的首获成功暗示着,借助于场这个诠释者来间接考察电流、磁棒和电荷的所有作用也许很方便。可以认为,场总与电流联系在一起。即使没有磁极去检验场是否存在,场也总在那里。让我们沿这条新的线索追溯下去。

    我们可以像介绍引力场、电流或磁棒的场那样来介绍带电导体的场。再举一个最简单的例子。要想绘制一个带正电球体的场,必须知道一个带正电的小检验体被置于作为场源的带电球体附近时会受到什么力的作用。我们使用带正电的检验体而不用带负电的,仅仅是出于习惯,表明力线的箭头应该朝哪个方向画。这个模型之所以类似于前面引力场的模型,是因为库仑定律与牛顿定律相似。两个模型的唯一差别就是箭头的方向相反。的确,两个正电荷相互排斥,两个质量则相互吸引。然而,带负电球体的场与引力场相同,因为带正电的小检验体会被场源吸引。

    假如电极和磁极都静止,它们之间就不会有作用,既没有吸引,也没有排斥。如果用场的语言来表达这一事实,我们可以说:静电场并不影响静磁场,反之亦然。“静场”是指不依时间变化的场。如果没有外力干扰,磁棒和电荷可以靠得很近而永不发生作用。静电场、静磁场和引力场的性质各有不同。它们不会混合,而会各自保持个性,无论是否有其他场存在。

    让我们回到带电球体。它一直静止着,现在假设在某个外力的作用下开始运动。带电球体在运动,这句话用场的语言来表达就是:电荷的场随时间而变化。但罗兰的实验告诉我们,带电球体的运动相当于电流,而任何电流必定伴随着磁场,因此我们的推理链条是:

    电荷的运动→电场的变化

    ↓

    电流→伴随的磁场

    由此我们断定:电荷运动所产生的电场变化总是伴随着磁场。

    我们的结论建立在奥斯特实验的基础上,但其意涵远不止于此。它包含着这样一种认识:把随时间变化的电场与磁场联系起来对于接下来的事情至关重要。

    只要电荷静止,就只有静电场。一旦电荷开始运动,磁场就出现了。而且电荷越大,运动越快,电荷运动所产生的磁场就越强。这也是罗兰实验的一个推论。用场的语言来说:电场变化越快,伴随的磁场就越强。

    这里我们试图把熟知的事实从按照旧力学观构造的电流体语言翻译为场的新语言。稍后我们会看到,这种新的语言是多么清晰、有益和深刻。

    2.场论的两个支柱

    “电场的变化总是伴随着磁场”。若把“电”与“磁”互换一下,这句话就成了“磁场的变化总是伴随着电场”。这种说法是否正确,只有实验才能判定。然而,正是由于使用了场的语言,我们才会想到提出这个问题。

    一百多年前,法拉第做实验发现了感生电流。

    这个实验演示起来很简单。我们只需一个螺线管或其他某个电路,一根磁棒以及检验电流是否存在的仪器。起初,形成闭合电路的螺线管附近有一根静止的磁棒。由于没有源,导线中没有电流通过,只存在磁棒的不随时间变化的静磁场。现在,我们迅速改变磁棒的位置,使之远离或靠近螺线管。这时导线内会出现极短时间的电流,然后又消失了。每当磁棒位置改变,电流就会重新出现,这可以用足够灵敏的仪器检测出来。但从场论的观点来看,电流意味着电场的存在,这个电场迫使电流体在导线中流动。当磁棒再次静止时,电流便消失了,因而电场也消失了。

    假定我们现在还不知道场的语言,而要用旧力学观的语言对这些实验结果进行定性和定量的描述,则这个实验可以表达成:磁偶极子的运动产生了一个新的力,这个力推动导线中的电流体流动。接下来的问题是:这个力与什么有关?这很难回答。我们不得不研究这种力与磁棒速度的关系、与磁棒形状的关系以及与线圈形状的关系。不仅如此,如果用旧语言来解释,那么这个实验无法告诉我们,用另一个通电电路的运动来代替磁棒的运动是否也能产生感生电流。

    如果使用场的语言,并再次相信作用由场决定,情况就完全不同了。我们立刻可以看到,通电的螺线管会起到和磁棒一样的作用。下图中有两个螺线管:一个较小,其中有电流通过,另一个较大,其中的感生电流可以检验出来。像前面移动磁棒那样移动小螺线管,大螺线管中便会产生感生电流。此外,为了产生和消除磁场,我们不必移动小螺线管,而只需通过断开和闭合电路来产生和消除电流。我们再次看到,场论提出的新事实又被实验证实了!

    再举一个简单点的例子。取一个没有任何电流源的闭合导线,它的附近有一个磁场。至于这个磁场的源是另一个通电电路还是一根磁棒,这并不重要。下图显示了闭合电路和磁力线。用场的语言很容易对感应现象作出定性和定量的描述。如图所示,一些力线穿过了导线围成的表面。我们需要考察的是穿过导线围成的那部分平面的力线。无论场多强,只要场不变,就不会有电流。然而,只要穿过导线围成的表面的力线数目发生变化,导线中就立刻会有电流流过。电流由穿过该表面的力线数目的变化来决定,无论这种变化是如何引起的。对于感生电流的定性和定量描述,力线数目的变化是唯一重要的概念。“力线数目的变化”意指力线的密度在变化,我们还记得,这意味着场强在变化。

    于是,我们推理链条中的几个关键点是:磁场的变化→感生电流→电荷的运动→电场的存在。

    因此,变化的磁场总是伴随着电场。

    这样我们就找到了支撑电场和磁场理论的两个最重要的支柱。第一个支柱是变化的电场与磁场有关联,它源于奥斯特的磁针偏转实验,并且导出了这样一个结论:变化的电场总是伴随着磁场。

    第二个支柱则把变化的磁场与感生电流关联起来,它源于法拉第的实验。两者成为定量描述的基础。

    同样,与变化磁场相伴随的电场似乎亦是某种真实的东西。此前我们必须设想,即使没有磁极作检验,电流的磁场也依然存在。同样,这里必须认为,即使没有导线来检验感生电流是否存在,电场也依然存在。

    事实上,这两个支柱可以归结为一个,即以奥斯特实验为根据的那个支柱。法拉第的实验结果可以由这个支柱和能量守恒定律推导出来。我们说有两个支柱只是为了清晰和简洁。

    场的描述还有另一个结果需要提及。假设有一个以伏打电池为电流源的通电电路。导线与电流源之间的连接突然断开,当然现在不再有电流。然而在电流中断的一瞬间却发生了一个复杂的过程,这个过程同样只有用场论才能预见到。在电流中断之前,导线周围有一个磁场。电流中断的一瞬间,这个磁场便不复存在。因此,正是由于电流的中断,磁场才消失。穿过导线围成的表面的磁力线数目变化极快。但这种迅速变化无论是怎样产生的,必定会产生感生电流。真正重要的是,磁场的变化越大,感生电流就越强。这个结果是对场论的又一个检验。电流的断开必定伴随着强烈而短暂的感生电流的出现。实验再次证实了这个预言。断开过电流的人都会注意到有火花产生,火花显示了磁场的迅速变化所引起的强大电势差。

    这个过程也可以从能量的观点去看。磁场消失,火花产生。火花代表能量,因此磁场也必定代表能量。为了前后一致地使用场的概念及其语言,我们必须把磁场看成能量的储藏所。只有这样,我们对电现象和磁现象的描述才能符合能量守恒定律。

    起初,场只不过是一个有用的模型,而现在却变得越来越真实了。它帮助我们理解了旧事实,并引导我们认识新事实。把能量归于场是物理学发展中的一大步,场的概念越来越被强调,对力学观不可或缺的实体概念越来越被抑制。

    3.场的实在性

    所谓的麦克斯韦方程总结了对场的定律的定量数学描述。迄今为止我们所提到的事实都导向了这些方程,但方程的内容却比我们所能指出的丰富得多。在麦克斯韦方程简单的形式之下隐藏着深刻的内容,只有通过认真研究才能将其揭示出来。

    麦克斯韦方程的提出是自牛顿时代以来物理学中最重要的事件,不仅因为它内容丰富,而且也因为它成了一种新型定律的典范。

    麦克斯韦方程的典型特征可见于现代物理学的所有其他方程,我们可以用一句话来概括它:麦克斯韦方程是描述场的结构的定律。

    为什么麦克斯韦方程在形式和特征上都不同于经典力学方程呢?说这些方程描述了场的结构,这是什么意思呢?如何根据奥斯特和法拉第的实验结果提出一种对物理学的未来发展至关重要的新型定律呢?

    从奥斯特的实验中我们已经看到,磁场围绕一个变化的电场盘卷起来。从法拉第的实验中我们又看到,电场围绕一个变化的磁场盘卷起来。为了概述麦克斯韦理论的一些典型特征,我们暂时只关注这两个实验中的一个,比如法拉第的实验。再看看变化的磁场产生感生电流的那幅图。我们知道,如果穿过导线所围成的表面的力线数目发生变化,就会产生感生电流。因此,无论是磁场变化还是电路发生变形或移动,都会出现电流。也就是说,只要穿过表面的磁力线数目发生了变化,无论是由什么引起的,都会出现电流。若把所有这些可能性都考虑进来以讨论它们的特殊影响,势必会引出一种非常复杂的理论。但能否把这个问题简化呢?让我们试着不去考虑与电路的形状、长度以及导线围成的表面有关的一切因素,想象这幅图中的电路变得越来越小,渐渐收缩成一个极小的线圈,只包含空间的某一点。这样一来,与形状和大小有关的因素就完全不相干了。在闭合曲线收缩成一点的这个极限过程中,我们自然而然不再考虑线圈的大小和形状,由此得到的定律把磁场和电场在任一时刻和空间中任何一点的变化联系在一起。

    这是通向麦克斯韦方程的主要步骤之一。它同样是想象出来的理想实验,即用一个缩成一点的电路来重复法拉第的实验。

    我们其实应当称它为半步,而不是一整步。到目前为止,我们的注意力一直集中在法拉第的实验上,但建立在奥斯特实验基础上的场论的另一个支柱也必须同样认真地加以考察。在这个实验中,磁力线在电流周围盘卷起来。把环形的磁力线缩成一点,就迈出了剩余半步。而整个这一步给出了磁场和电场在任一时刻和空间中任何一点的变化之间的关联。

    此外,还有重要的一步需要迈出。根据法拉第的实验,必须有导线来检验电场是否存在,正如在奥斯特的实验中必须有磁极或磁针来检验磁场是否存在一样。但麦克斯韦的新理论观念超越了这些实验事实。在麦克斯韦的理论中,电场和磁场,或者简单地说电磁场,是某种实在的东西。变化的磁场总会产生电场,不论是否有导线去检验电场的存在;变化的电场也总会产生磁场,不论是否有磁极去检验磁场的存在。

    因此,提出麦克斯韦方程需要两个关键步骤。第一,在思考奥斯特的实验和罗兰的实验时,必须把围绕电流和变化的电场盘卷起来的磁场的环形力线缩成一点;在思考法拉第的实验时,必须把围绕变化的磁场盘卷起来的电场的环形力线缩成一点。第二,认识到场是某种实在的东西;电磁场一旦产生出来,就会按照麦克斯韦的定律而存在、作用和变化。

    麦克斯韦方程描述了电磁场的结构。这些定律的适用场所是整个空间,而不像力学定律那样,只适用于有物质或电荷存在的一些点。

    我们还记得,在力学中,如果知道一个粒子在某一时刻的位置和速度,又知道作用力,就可以预知这个粒子的整个未来路经。在麦克斯韦的理论中,如果知道场在某一时刻的情况,就可以由理论方程推出整个场在空间和时间中如何变化。就像力学方程使我们能够追溯物质粒子的历史,麦克斯韦方程亦能使我们追溯场的历史。

    但力学定律与麦克斯韦定律之间仍然有一个重要区别。比较一下牛顿的引力定律与麦克斯韦的场定律,就能显示出这些方程所表达的一些典型特征。

    借助于牛顿定律,我们可以由太阳与地球之间的作用力推出地球的运动。牛顿定律把地球的运动与太阳的作用联系在一起。地球和太阳虽然相距甚远,但都是力的演出中的演员。

    在麦克斯韦的理论中,根本没有物质演员。该理论的数学方程表达了支配电磁场的定律。它们不像牛顿定律那样把两个相隔很远的事件联系在一起,不是把此地发生的事情与彼地的条件联系在一起。此时此地的场只与刚刚过去那个时刻直接邻域的场有关。如果知道此时此地发生的事情,我们就可以借助于这些方程预测空间上稍远的位置以及时间上稍迟的时刻会发生什么,进而一步步增加对场的了解。把这些很小的步骤加起来,就可以从远处发生的事情推出此处发生的事情。而牛顿理论则恰恰相反,它只容许一些把遥远的事件联系起来的大步骤。奥斯特和法拉第的实验都可以从麦克斯韦的理论中重新获得,但要想做到这一点,只能把受麦克斯韦方程支配的各个小步骤加起来。

    若对麦克斯韦方程进行更深入的数学研究,我们便可以得出一些新的出乎意料的结论,从而能在更高的层次上检验整个理论,因为理论的推论现已定量,可以通过一连串逻辑论证揭示出来。

    我们再来设想一个理想实验。假定在外界影响下,一个带电小球像钟摆一样有节奏地快速振荡起来。根据我们关于场的变化所掌握的知识,如何用场的语言来描述这里正在发生的事情呢?

    电荷的振荡产生了变化的电场,而变化的电场又总是伴随着变化的磁场。如果把闭合电路放在附近,那么这个变化的磁场又会伴随着电路中的电流。所有这些都只是重复已知的事实,但研究麦克斯韦方程可以使我们更深地理解振荡电荷的问题。从麦克斯韦方程出发进行数学推导,我们可以查明振荡电荷周围场的性质、在场源近处和远处的结构以及随时间的变化。这样推理出来的结果就是电磁波。振荡的电荷辐射出能量,能量以一定的速度穿越空间;但能量的转移————一种状态的运动————乃是一切波动现象的特性。

    我们已经考察过几种不同类型的波:既有球体的振动所产生的纵波,密度变化经由介质传播出去;又有在一种胶状介质中传播的横波,球体转动所导致的胶状物的形变经由介质传播出去。那么电磁波传播的是什么种类的变化呢?正是电磁场的变化!电场的每一次变化都会产生磁场,这个磁场的每一次变化又会产生电场,……,电场和磁场就这样相互产生下去。由于场代表能量,以特定速度在空间中传播的所有这些变化就形成了一个波。从理论中可以推出,电力线和磁力线总处于与传播方向垂直的平面上,因此形成的波是横波。我们根据奥斯特和法拉第的实验而形成的场的图像仍然保持着原有的特征,但我们现在认识到,它有着更深的意义。

    电磁波是在空荡荡的空间中传播的,这同样是麦克斯韦理论的一个推论。如果振荡电荷突然停止运动,它的场就成了静电场。但电荷振荡所产生的一系列波继续在传播。这些波独立存在着,其变化的历史可以追溯,就像追溯任何其他物质对象的历史一样。

    麦克斯韦方程描述了电磁场在空间中任一点和任一时刻的结构,由这些方程可以推出,电磁波在空间中以一定的速度传播着,并且随时间变化。

    还有一个非常重要的问题:电磁波是以多大的速度在空间中传播的呢?借助于与波的实际传播无关的一些简单实验的数据,麦克斯韦的理论给出了明确回答:电磁波的速度等于光速。

    奥斯特和法拉第的实验是麦克斯韦定律的基础。这些定律是用场的语言表达的。我们前面谈到的所有结果都来自于对这些定律的认真研究。电磁波以光速传播,这一理论发现是科学史上最伟大的成就之一。

    实验证实了理论的预言。50年前,赫兹第一次证明了电磁波的存在,并且用实验证实了它的速度等于光速。今天,千千万万的人都在见证电磁波的发送和接收。他们的仪器远比赫兹的仪器复杂,这些仪器能够探测到距离波源数千英里以外波的存在,而不是只有几米开外。

    4.场和以太

    电磁波是以光速在空间中传播的横波。光速等于电磁波的速度,这暗示光学现象与电磁现象之间有密切的关系。

    如果不得不在微粒说与波动说之间作出抉择,那么我们决定支持波动说。光的衍射是影响我们作出这一决定的最有力论据。但假定光波是一种电磁波不仅不会违反任何对光学事实的解释,相反还会得出其他结论。假如真是这样,那么物质的光学性质与电学性质之间必定存在着某种联系,这种联系可以从麦克斯韦的理论中推导出来。事实上,我们的确可以推出这样的结论,而且禁得起实验的检验,这是支持光的电磁说的关键论据。

    这个重大成果归功于场论。两个看似无关的科学分支被同一个理论统一了起来。同一套麦克斯韦方程既可以描述电磁感应,又可以描述光的折射。如果我们的目标是用一个理论来描述业已发生或可能发生的一切现象,那么光学与电学的结合无疑是向前迈进了一大步。从物理学的观点来看,普通电磁波与光波的唯一区别是波长:光波的波长很短,肉眼就可以检测到,而普通电磁波的波长很长,需要无线电接收器才能检测出来。

    旧力学观试图把自然之中的所有事件都归结为物质粒子之间的作用力。电流体理论就是建立在这种力学观基础上的第一种朴素理论。在19世纪初的物理学家看来,场并不存在,只有实体和实体的变化才是真实的。他试图只用直接涉及两个电荷的概念来描述两个电荷之间的作用。

    起初,场的概念仅仅是方便我们从力学观去理解现象的一种工具。而在新的场语言中,对于理解电荷的作用至关重要的不是电荷本身,而是对电荷之间场的描述。人们对新概念的认识逐渐加深,以至于后来场的重要性超过了实体。大家意识到,物理学中发生了非常重要的事情。一种新的实在被创造出来,这是一个在力学描述中没有地位的新概念。经过一番努力,场的概念在物理学中渐渐取得了领导地位,直到今天也仍然是一个基本的物理概念。在现代物理学家看来,电磁场就和他所坐的椅子一样实在。

    但是,如果认为新的场论已经使科学摆脱了旧的电流体理论的错误,或者说新理论摧毁了旧理论的成就,那是不公平的。新理论既显示了旧理论的局限性,也显示了它的优点,使我们能从一个更高的层次上重新获得旧概念。不仅电流体和场的理论是如此,任何物理理论的变化,无论看起来多么具有革命性,都是如此。例如,我们仍然可以在麦克斯韦的理论中看到电荷概念,尽管这里的电荷仅仅是电场的一个源。库仑定律仍然有效,作为诸多推论之一包含在麦克斯韦方程中。我们仍然可以应用旧理论,只要研究的事实处于该理论的有效范围之内。但我们也可以应用新理论,因为一切已知事实都包含在新理论的有效范围之内了。

    借用一个比喻,我们可以说,创立新理论与其说像摧毁一个旧仓库,在那里建起一座摩天大楼,倒不如说更像在爬山,随着视野变得越来越宽广,会发现我们的出发点与周围的广大区域之间有着意想不到的关联。但我们的出发点还在那里,仍然可见,只不过显得更小了,成为我们克服种种阻碍爬上山峰之后获得的宽广视野中一个极小的部分。

    的确,人们很久才认识到麦克斯韦理论的全部内容。起初,大家都以为借助于以太,最后总可以用力学方法来解释场。后来渐渐意识到,这种纲领是行不通的,场论的成果已经太显著和重要,以致不可能用力学教条来替换它。另一方面,为以太设计力学模型的问题似乎变得越来越没有意义,那些假设的牵强与人为愈发令人沮丧。

    现在唯一的出路似乎是理所当然地认为空间具有传送电磁波的物理属性,而不去过分在意这句话的含义。我们仍然可以使用“以太”这个词,但只是为了表达空间的某种物理属性。在科学的发展过程中,“以太”这个词的含义已经屡次改变。此时它已不再是一种由粒子构成的介质。它的故事还没有结束,相对论将它继续了下去。

    5.力学框架

    故事进行到这个阶段,我们必须回到开头,即伽利略的惯性定律。我们再次引用它:

    任何物体都会保持其静止或匀速直线运动状态,除非有外力迫使其改变这种状态。

    一旦理解了惯性概念,我们对它似乎已经没有更多可说的了。虽然我们已经详细讨论过这个问题,但并没有穷尽。

    设想有一位严肃的科学家,他相信可以用实际的实验来证明或否证惯性定律。他沿着水平的桌面推动小球,并尽可能地消除摩擦。他注意到,桌面和小球越光滑,运动就越均匀。正当他要宣布惯性原理时,有人突然给他开了一个玩笑。我们的物理学家在一个与外界完全隔绝的无窗房间里工作。开玩笑之人安装了某种机械装置,使整个房间可以围绕一根穿过其中心的轴迅速旋转。旋转一经开始,这位物理学家便得到了出乎预料的新体验。一直在匀速运动的小球试图远离房屋中心,尽可能地靠近房间墙壁。他本人亦感到有一种奇特的力把他推到墙上。他的感觉与转急弯的火车或汽车中的人的感觉很相似,与旋转木马上的人的感觉更相似。他之前得到的所有成果于此毁于一旦。

    我们这位物理学家不得不连同惯性定律放弃所有力学定律。惯性定律是他的出发点,倘若这个出发点改变了,他所有进一步的结论也就改变了。一个观察者如果注定要在这个转动的房间度过一生,并且在里面做所有实验,那么他将得到与我们不同的力学定律。另一方面,如果他进入房间时对物理学的原理已经有了深刻的认识和坚定的信念,那么他会解释说,力学之所以看起来出了毛病,是因为房间在旋转。借助于力学实验,他甚至可以查明房间是如何旋转的。

    我们为什么对旋转房间中的这位观察者这么感兴趣?这是因为在我们的地球上,在某种程度上我们也处于同样的状况。自哥白尼时代以来我们已经知道,地球在绕轴自转并且绕太阳运转。在科学的发展中,即使是这个大家都很清楚的简单观念也并非未受触动。不过让我们暂时抛开这个问题,接受哥白尼的观点。如果这位旋转的观察者无法验证力学定律,那么我们在地球上也应当无法验证。不过地球旋转得较慢,因此影响并不很明显。尽管如此,许多实验都显示与力学定律有微小偏差,可以认为,这些偏差的一致性证明了地球在转动。

    可惜我们无法置身于太阳与地球之间,在那里证明惯性定律的严格有效性,并且观察一下旋转的地球。只有在想象中才能做到这些。所有实验都只能在我们居住的地球上进行。这一事实常常被更科学地说成:地球是我们的坐标系。

    为了更清楚地表明这些词的意思,不妨举一个简单的例子。我们可以预言从塔上丢下的石头在任一时刻的位置,并通过观察来验证我们的预言。将一根量杆置于塔旁,我们便可以预言落体在任一时刻会与量杆上的哪个标记重合。显然,我们不能用橡胶或实验时会发生变化的其他任何材料来制作塔和量杆。事实上,我们的实验原则上只需要一把与地球刚性连接的刻度不变的标尺以及一个走时准确的钟。有了这两件东西,我们不仅可以忽视塔的建筑设计,甚至可以忽视塔的存在。上述假设都很平凡,描述这些实验时通常不会提到。但这种分析表明,我们的每一句陈述背后都隐藏着许多假设。这里我们假定存在着一根刚性的量杆和一个理想的钟,否则我们就无法检验伽利略的落体定律。有了这些简单而基本的物理仪器,一根量杆和一个钟,我们就能在一定的准确度上验证这个力学定律。认真做这个实验,就会发现理论与实验之间有些偏差,这是因为地球在旋转,或者换句话说,因为这里表述的力学定律在与地球刚性连接的坐标系中并非严格有效。

    在所有力学实验中,无论是什么类型,我们都必须确定质点在某一时刻的位置,就像在上述实验中确定落体的位置一样。但位置必须相对于某种东西来描述,比如在上述实验中相对于塔和标尺来描述位置。我们需要某个所谓的参照系,这是一个用来确定物体位置的力学框架。若要描述物体和人在城市中的位置,大街小巷就是我们的参照系。迄今为止,我们引用力学定律时从未关注过参照系,因为我们碰巧生活在地球上,在任何情况下都不难固定一个与地球刚性连接的参照系。我们的所有观察都参照的这个由刚性的不变物体构成的参照系被称为坐标系。

    迄今为止,我们所有的物理陈述都缺少某种东西。我们没有注意到,一切观察都必须在某个坐标系中进行。我们没有描述这个坐标系的结构,而是径直忽视了它的存在。例如我们曾说“一个物体在匀速运动……”,其实我们应该这样说:“一个物体相对于某个选定的坐标系在匀速运动……。”那个旋转房屋的实验告诉我们,力学实验的结果也许依赖于我们选择的坐标系。

    如果两个坐标系作相对转动,那么力学定律不可能在两者中都有效。若把一个游泳池当作其中一个坐标系,而且它的水面是平的,那么在另一个坐标系来看,这类游泳池中的水面就是弯的,这是用茶匙搅动咖啡的人所熟知的现象。

    在表述力学的主要线索时,我们忽略了很重要的一点。我们并没有说它们相对于哪一个坐标系有效。于是,整个经典力学都悬在半空中,因为我们不知道它是相对于哪一个坐标系而言的。不过,这个困难我们暂且不去考虑。我们要做一个略有不确的假设,即在任何与地球刚性连接的坐标系中,经典力学的定律都有效。这样做是为了把坐标系固定下来,使我们的陈述明确起来。虽然说地球是一个合适的参照系并不完全正确,但我们暂且接受它。

    因此,我们假定存在着一个力学定律在其中有效的坐标系。这样的坐标系只有一个吗?假定有一个相对于地球在运动的坐标系,比如一列火车、一艘船或一架飞机,在这些新的坐标系中,力学定律都有效吗?我们确实知道它们并非总是有效,比如火车转弯,船在风暴中颠簸,飞机在尾旋下降时。我们先看一个简单的例子。假定有一个坐标系在相对于我们的“好”坐标系(即力学定律在其中有效的坐标系)匀速运动,比如一列沿直线匀速行驶的理想火车或一艘平稳航行的轮船。我们从日常经验中得知,这两个坐标系都是“好的”,在匀速行驶的火车或轮船中所做的物理学实验和在地面上做的实验将会给出完全相同的结果。但如果火车突然停止或加速,或者海面起了风浪,就会发生奇怪的事情。在火车里,箱子从行李架上掉下来;在船上,桌椅东歪西倒,乘客也晕船了。从物理学的观点来看,这只表明力学定律不适用于这些坐标系,它们是“坏”坐标系。

    这个结果可以表达为所谓的伽利略相对性原理:如果力学定律在一个坐标系中有效,那么它们在相对于这个坐标系作匀速直线运动的任何其他坐标系中也有效。

    假定有两个相对作非匀速运动的坐标系,则力学定律不可能在两者中都有效。“好”坐标系就是力学定律在其中有效的坐标系,称为惯性系。至于惯性系是否存在,这个问题直到现在也没有解决。但只要有这样一个系统,就会有无数个这样的系统。任何相对于初始惯性系作匀速直线运动的坐标系都是惯性系。

    考虑这样一种情形:两个坐标系从已知位置出发,以已知的速度相对作匀速直线运动。喜欢具象思维的人可以设想是一艘船或一列火车相对于地面在运动。无论在地面上还是在相对地面作匀速直线运动的火车或船上,都能以同样的精确度对力学定律进行实验验证。但是,假如两个系统的观察者分别站在各自系统的立场上开始讨论对同一事件的观察,便会出现某种困难。每个人都想把对方的观察翻译成自己的语言。再举一个简单的例子:从地球和作匀速直线运动的火车这两个坐标系来观察一个粒子的同样运动。这两个坐标系都是惯性系。如果两个坐标系在某一时刻的相对速度和相对位置均为已知,那么是否只要知道了在一个坐标系中的观察结果,就可以查明在另一个坐标系中的观察结果呢?描述事件时,必须知道如何从一个坐标系过渡到另一个坐标系,因为这两个坐标系是等价的,同样适合于描述自然事件。事实上,只要知道一个坐标系中的观察者获得的结果,就可以知道另一个坐标系中的观察者所获得的结果。

    让我们更抽象地考虑这个问题,不用船或火车。为简便起见,我们只研究直线运动。假定有一根带有刻度的刚性量杆和一个准时的钟。在直线运动的简单情形中,刚性量杆就像伽利略实验中塔上的标尺一样代表一个坐标系。在直线运动的情形中,把坐标系想象成一根刚性量杆,在任意运动的情形中,把坐标系想象成一个由相互平行和垂直的量杆所组成的刚性框架,总要更简单、更好,塔、墙、街道等则不必考虑。假定在这种最简单的情形中有两个坐标系,即两根刚性量杆,我们把一根画在另一根上面,分别称之为“上”坐标系和“下”坐标系。假定这两个坐标系以某个速度作相对运动,一根沿着另一根滑动。还可以假定两根量杆均为无限长,只有起点没有终点。这两个坐标系只用一个钟就够了,因为时间的流逝对这两个坐标系是一样的。观察开始时,两根量杆的起点是重合的。此时质点的位置在两个坐标系中是用同一个数来刻画的。这个质点与量杆刻度上的某一点重合,这样就给出了确定该质点位置的数。但假如两根量杆相对作匀速运动,那么过了一段时间,比如1秒钟,则与位置相应的数将会不同。考虑静止于上量杆的一个质点,确定它在上坐标系中位置的数不随时间而改变,但下量杆上相应的数却随时间而改变。我们不说“质点位置对应的数”,而会简要地说“质点的坐标”。于是我们从图上看到,下面这句话虽然听起来很复杂,却是正确的,而且表达的意思非常简单。质点在下坐标系的坐标等于它在上坐标系的坐标加上上坐标系的原点在下坐标系的坐标。重要的是,只要我们知道质点在一个坐标系中的位置,就能计算出它在另一个坐标系中的位置。为此,我们必须知道这两个坐标系在每一个时刻的相对位置。这些内容虽然听起来很学术,其实很简单,若不是后面还会用到,几乎不值得作这些详细讨论。

    这里要注意确定质点的位置与确定事件的时间之间的差别。每一个观察者都有他自己的量杆作为他的坐标系,但他们所有人都只有一个钟。时间是某种“绝对的”东西,对于所有坐标系中的所有观察者来说都以相同的方式流逝。

    再举一个例子。一个人以每小时3英里的速度在一艘大船的甲板上散步。这是他相对于船的速度,或者说是他相对于一个与船刚性连接的坐标系的速度。假定船相对于岸的速度是每小时30英里,而且人与船沿同一方向作匀速运动,那么这个散步的人相对于岸上一位观察者的速度将是每小时33英里,相对于船是每小时3英里。我们可以把这个事实说得更抽象一些:一个运动质点相对于下坐标系的速度等于它相对于上坐标系的速度加上或减去上坐标系相对于下坐标系的速度,是加是减要看速度方向相同还是相反。因此,如果知道两个坐标系的相对速度,我们可以把位置和速度从一个坐标系变换到另一个坐标系。位置(或坐标)和速度都是这样一些量的例子,它们在不同的坐标系中有所不同,并且由一些(在这个例子中非常简单的)变换定律联系在一起。

    然而,有些量在两个坐标系中是相同的,所以无须变换定律。比如在上量杆上取两个固定点,考察它们之间的距离。这个距离便是两点的坐标之差。为了找到这两个点相对于不同坐标系的位置,我们不得不使用变换定律。但如图所示,在构造两个位置的差异时,不同坐标系所产生的影响相互抵消了。我们得先加上再减去两个坐标系原点之间的距离。因此,两点之间的距离是不变的,也就是与坐标系的选择无关。

    下一个与坐标系无关的量的例子是速度的变化,这个概念我们在力学中已经很熟悉了。假定从两个坐标系去观察一个沿直线运动的质点。在每一个坐标系中的观察者看来,质点的速度变化是两个速度之差,而两个坐标系的相对匀速运动所产生的影响在计算两者之差时消去了,因此速度的变化是一个不变量,当然,只有当两个坐标系相对作匀速直线运动时才是如此。否则,速度变化在每一个坐标系中也会不同,这种不同是由代表我们坐标系的两根量杆的相对运动的速度变化带来的。

    现在举最后一个例子。假定有两个质点,其间的作用力只与距离有关。在直线运动的情况下,距离是不变量,因而力也是不变量。因此,把力与速度的变化联系起来的牛顿定律在两个坐标系中都有效。我们再次得到了一个被日常经验所确证的结论:如果力学定律在一个坐标系中有效,那么它们在相对于该坐标系作匀速直线运动的一切坐标系中都有效。当然,我们的例子非常简单,是坐标系可以用一根刚性量杆来代表的直线运动的例子。但我们的结论却普遍有效,可以将它们概括为以下几条:

    1.我们不知道有什么规则能够找到一个惯性系。但只要给出一个惯性系,就能找到无数个,因为所有相对作匀速直线运动的坐标系,只要其中一个是惯性系,就全都是惯性系。

    2.与一个事件相对应的时间在所有坐标系中都相同。而坐标和速度却并非如此,它们依照变换定律而改变。

    3.虽然从一个坐标系过渡到另一个坐标系时坐标和速度会改变,但力和速度变化相对于变换定律却是不变的,因此力学定律相对于变换定律也是不变的。

    我们把这里针对坐标和速度而提出的变换定律称为经典力学的变换定律,或者简称经典变换。

    6.以太和运动

    伽利略相对性原理对于力学现象是有效的。同样的力学定律适用于一切作相对运动的惯性系。那么对于非力学现象,尤其是场的概念被证明非常重要的那些现象,这条原理也是有效的吗?与这个问题有关的一切问题立刻把我们带到了相对论的出发点。

    我们还记得,光在真空或者说以太中的速度是3×108米每秒,光是一种在以太中传播的电磁波。电磁场携带着能量,这种能量一旦从它的源辐射出去,就有了独立的存在性。虽然我们已经深知以太在力学结构上有许多困难,但我们暂时还是继续认为电磁波和光波在以太介质中传播。

    设想我们坐在一个与外界完全隔绝的封闭房间里,空气既不能进来也不能出去。如果我们坐着说话,那么从物理的观点来看,我们是在制造声波,它以声音在空气中的速度从静止的声源传播出去。倘若口耳之间没有空气或其他物质介质,我们就听不到声音。实验表明,如果没有风,而且空气在我们所择定的坐标系中是静止的,那么声音在空气中的速度沿各个方向都是一样的。

    现在想象我们的房间匀速穿过空间。屋外的人可以透过运动房间(如果你愿意,也可以说火车)的玻璃墙看到里面发生的一切。他可以根据屋内观察者的测量结果推导出声音相对于与他那个环境相连的坐标系的速度,房间正是相对于这个坐标系运动的。这又是前面已经讨论很多的那个老问题,即已知在一个坐标系中的速度,如何确定在另一个坐标系中的速度。

    屋内的观察者宣称:在我看来,声音沿各个方向的速度都是一样的。

    屋外的观察者则宣称:在我的坐标系中确定的、在运动的房间中传播的声音速度沿各个方向并不相等。沿着房间运动方向的声速比标准声速大,逆着房间运动方向的声速比标准声速小。

    这些结论都是从经典变换中得出的,可以通过实验来验证。房间携带着它里面传播声音的空气介质一起运动,因此声速对于屋内和屋外的观察者是不同的。

    根据把声音看成在物质介质中传播的波的理论,我们还可以推出其他结论。要想听不到某个人的声音,我们可以(尽管这绝非最简单的方法)相对于他周围的空气以大于声速的速度向前奔跑,这样一来,产生的声波就永远也到达不了我们的耳朵了。另一方面,如果我们错过了一个永远也不会重复的重要的词,我们必须以大于声速的速度追赶声波去捕捉那个词。这两个例子并没有什么不合理的地方,只不过我们都必须以大约400码每秒的速度奔跑。但我们可以想象,随着未来技术的进一步发展,这样的速度是可以实现的。大炮射出的炮弹的速度其实要大于声速,因此骑在这样一颗炮弹上的人永远也听不到发射炮弹的声音。

    所有这些例子都是纯力学性的,现在我们可以提出一些重要的问题:我们刚才就声波所说的内容是否也适用于光波呢?伽利略相对性原理和经典变换是否既适用于力学现象,又适用于光学和电学现象呢?对于这些问题,如果只是简单地回答“是”或“否”而不深究它们的含义,那是很危险的。

    在相对于屋外观察者作匀速直线运动的房间中的声波的情形中,以下两个中间步骤对于我们的结论是必不可少的:

    运动的房间携带着传播声波的空气一起运动。

    在相对作匀速直线运动的两个坐标系中观察到的速度通过经典变换联系起来。

    至于光的相应问题则要表述得略有不同:屋内的观察者不再是说话,而是朝各个方向发出光信号或光波。我们进一步假定,发出光信号的光源永远静止在房间里。光波在以太中运动,就像声波在空气中运动一样。

    房间是否会像带着空气一起运动那样带着以太一起运动呢?我们没有以太的力学图像,所以很难回答这个问题。如果房间是封闭的,里面的空气就不得不随它运动。想象以太也是如此,这显然没有意义,因为所有物质都浸在以太之中,以太是无处不在的。任何门都关不住以太。所谓“运动的房间”现在仅仅指与光源刚性连接的一个运动的坐标系。但我们并非不能设想与光源一起运动的房间带着以太一起运动,就像封闭的房间带着声源和空气一起运动一样。但我们同样可以设想相反的情形:房间穿过以太,就像船穿过绝对平静的大海一样,不把介质的任何部分带走而只是穿过它而已。在我们的第一幅图像中,房间带着光源和以太一起运动。在这种情况下,我们可以与声波做类比,得出完全相似的结论。在我们的第二幅图像中,房间带着光源运动,但不带着以太运动。在这种情况下就不能与声波做类比了,在声波的情况下得出的结论并不适用于光波。这是两种极端的可能性。我们还可以设想更复杂的可能性,比如随光源一起运动的房间只携带部分以太。但在我们查明实验支持这两种较为简单的极限情形中的哪一种之前,没有理由讨论更为复杂的假设。

    我们先讲第一幅图像,假定房间带着与之刚性连接的光源和以太一起运动。如果我们相信那个应用于声波速度的简单的变换原理,那么现在也可以把结论应用于光波。我们没有理由怀疑这条简单的力学变换定律,它不过是说,某些情况下速度必须相加,某些情况下速度必须相减。我们暂时假定随光源一起运动的房间带着以太走,并且假定经典变换成立。

    如果我打开灯,光源与我的房间刚性地连接在一起,那么光信号的速度将是那个著名的实验值3×108米每秒。但屋外的观察者会注意到房间的运动,因此也会注意到光源的运动。既然以太被带着一起走,他一定会得出这样的结论:在我的屋外坐标系中,沿不同方向的光速是不同的。沿着房间运动方向的光速比标准光速大,逆着房间运动方向的光速比标准光速小。我们的结论是:如果随光源一起运动的房间带着以太走,而且力学定律是有效的,那么光速必定与光源的速度有关。如果光源朝着我们运动,从运动光源到达我们眼睛的光的速度就会较大,如果光源背离我们运动,光速就会较小。

    倘若我们的速度大于光速,我们就应当可以逃开光信号。我们可以追上此前发送的光波,从而看到过去发生的事件。我们追上它们的顺序与它们被发送的顺序相反,地球上发生的一连串事件看起来会像从后往前放映电影一样,先讲故事的结局。这些结论都源于一个假设,即运动的坐标系带着以太一起走,以及力学变换定律是有效的。倘若如此,光与声音的类比就是完美的。

    然而,没有迹象表明这些结论是真的。恰恰相反,为证明这些结论而作的所有观测都与之相违背。由于光速极大,会造成很多技术上的困难,所以这个裁定是从非常间接的实验中得到的,但其明确性没有任何疑问。无论光源是否在运动以及如何运动,光速在所有坐标系中都相同。

    这个重要的结论可以从许多实验中得出来。我们不准备详细描述这些实验,但可以作一些非常简单的论证。这些论证虽然并未证明光速与光源的运动无关,但能让这个事实令人信服和可以理解。

    在我们的太阳系中,地球和其他行星都围绕太阳运转。我们不知道是否还有其他行星系与太阳系相似。不过,存在着许多由两颗恒星组成的双星系,两颗恒星围绕着它们的引力中心转动。通过观察这种双星的运动,我们发现牛顿的引力定律是有效的。现在假定光的速度依赖于发射体的速度,那么恒星发出的光线是更快还是更慢就要看恒星发光时的速度。在这种情况下,整个运动将会非常混乱,我们不可能通过遥远的双星来确证支配我们整个行星系运动的同一个引力定律的有效性。

    我们再来考察一个实验,它所依据的观念非常简单。想象有一个飞速旋转的轮子。根据我们的假设,以太被轮子的运动所携带,并且参与运动。轮子静止或运动时,经过轮子附近的光波的速度会有所不同。静止以太中的光速不同于被轮子迅速带动的以太中的光速,正如声波的速度在无风和有风的日子会有所不同。但这种差异根本检测不到!无论从哪一个角度切入这个主题,无论设计出什么样的判决性实验,结果总是与运动会带动以太这一假设相矛盾。于是,在一些更详细的专业论证的支持下,我们得出了以下结论:

    光速并不依赖于光源的运动。

    运动物体不会带动周围的以太。

    因此,我们必须放弃声波与光波的类比,转而研究第二种可能性:所有物质都在以太中运动,而以太不参与任何运动。这意味着我们要假定存在着一个以太海,所有坐标系都静止其中或者相对于它运动。我们暂且不谈实验能否证明这个理论,先来熟悉一下这个新假设的含义以及从中能够推出什么结论。

    有这样一个坐标系,它相对于以太海是静止的。在力学中有许多相对作匀速直线运动的坐标系,但没有一个坐标系可以被区分出来。所有这些坐标系都同样“好”或同样“坏”。如果有两个相对作匀速直线运动的坐标系,在力学中问其中哪一个运动、哪一个静止是毫无意义的。我们只能观察到相对的匀速直线运动。伽利略相对性原理使我们无法谈及绝对的匀速直线运动。不仅存在着相对的匀速直线运动,而且存在着绝对的匀速直线运动,这句话是什么意思呢?它不过是说,有这样一个坐标系,一些自然定律在它之中不同于在所有其他坐标系之中。此外,每一个观察者都可以把在自己坐标系中有效的定律与在那个唯一的标准坐标系中有效的定律加以比较,以判定他自己的坐标系究竟是静止还是运动。这里的情况与经典力学不同,在经典力学中,伽利略的惯性定律使得绝对的匀速直线运动是毫无意义的。

    如果假设运动是穿过以太的,那么在场的现象领域中可以得出什么结论呢?这意味着有一个坐标系与所有其他坐标系都迥然不同,它相对于以太海是静止的。显然,在这个坐标系中有些自然定律必定是不同的,否则说“运动穿过以太”就没有意义了。如果伽利略相对性原理是有效的,那么运动穿过以太将毫无意义。这两种观念是无法调和的。然而,倘若存在一个由以太确定的特殊坐标系,那么说“绝对运动”或“绝对静止”就有了明确的意义。

    其实我们没有选择的余地。为了拯救伽利略相对性原理,我们曾假定坐标系在运动时带着以太一起走,但发现与实验不符。唯一出路就是放弃伽利略相对性原理,尝试假定一切物体都在平静的以太海中运动。

    下一步就是考察一些结论,它们违反伽利略相对性原理,支持运动穿过以太,并付诸实验检验。这样的实验容易设想,但很难做。由于我们这里只关注思想,所以不必操心技术上的困难。

    我们再回到前述的运动房间和屋内屋外的两位观察者。屋外的观察者代表由以太海指定的标准坐标系,在这个与众不同的坐标系中,光速总是具有同样的标准值。以太海中的所有光源,无论是静止还是运动,传播出来的光速都是一样的。房间和它的观察者都穿过以太而运动。设想房间中央的灯忽然发出闪光,随即熄灭,并设想房间的墙是透明的,因此屋内屋外的两位观察者都能测量光速。假如问这两位观察者期待得到什么样的结果,他们的回答大概会是这样:

    屋外的观察者:我的坐标系由以太海指定,我的坐标系中的光速总是那个标准值。我不必理会光源或其他物体是否在运动,因为它们绝不会把我的以太海带走。我的坐标系区别于所有其他坐标系。在这个坐标系中,无论光束的方向或光源的运动如何,光速必定是其标准值。

    屋内的观察者:我的房间穿过以太海而运动。房间的一面墙在远离光,另一面墙在靠近光。倘若我的房间相对于以太海以光速运动,那么从房间中央发出的光永远也到不了以光速远离它的那面墙。假如房间的运动速度小于光速,那么从房间中央发出的光波将先到达某一面墙。它将先到达朝着光波运动的墙,再到达远离光波运动的墙。因此,虽然光源与我的坐标系刚性连接,但沿各个方向的光速却不会相同。在相对于以太海运动的方向上光速较小,因为墙在远离;在相反的方向上光速较大,因为墙在朝着光波运动,所以遇到光波早些。

    因此,只有在以太海所指定的那个坐标系中,各个方向上的光速才是相等的。而在相对于以太海运动的其他坐标系中,光速与我们的测量方向有关。

    凭借刚才考察的判决性实验,我们可以检验运动穿过以太海的理论。事实上,大自然为我们提供了一个高速运动的系统————每年绕太阳运转一周的地球。如果我们的假设是正确的,那么沿着地球运动方向的光速将会不同于逆着地球运动方向的光速。这种差异可以计算出来,并且可以设计出恰当的实验加以验证。由于该理论预言的时间差很小,所以必须有非常精巧的实验安排。著名的迈克耳孙-莫雷实验(Michelson-Morley experiment)实现了这个目的,它未能发现光速与方向有什么关系,从而宣判了所有物质都在平静的以太海中穿行的理论死刑。倘若假设以太海理论,那么不仅光速,而且其他与场有关的现象也会显示出与运动坐标系的方向有关。每一个实验都与迈克耳孙-莫雷实验一样给出了否定的结果,从未表明与地球的运动方向有任何关系。

    局面变得越来越严重了。两条假设我们都已经试验过了。第一个是说运动物体带着以太走,它违反了光速与光源的运动无关这个事实。第二个是说存在着一个独特的坐标系,运动物体不是带着以太走,而是在永远平静的以太海中穿行。如果是这样,那么伽利略相对性原理就是无效的,光速不可能在每一个坐标系中都相等。这同样与实验相矛盾。

    还有更加人为的理论被试验过,认为真理介于这两个极限情形之间,运动物体只携带一部分以太。但这些理论都失败了。事实证明,借助于以太的运动,穿过以太的运动,或者同时用这两种运动来解释运动坐标系中的电磁现象的所有努力均以失败而告终。

    这样便出现了科学史上最富戏剧性的局面之一。所有关于以太的假设都行不通!实验的判决总是否定的。回顾物理学的发展我们可以看到,以太自出生之日起便是物理实体家族中“令人难堪的孩子”。首先,我们构造不出简单的以太力学模型,只好作罢,这在很大程度上导致了力学观的崩溃。其次,我们不再指望通过以太海的存在来区分出一个坐标系,使我们既能识别相对运动又能识别绝对运动。除了带着波一起走,这将是以太显示和证明自己存在的唯一方式。我们想让以太变得实在的一切努力都失败了。它既显示不出其力学结构,又显示不出绝对运动。除了发明以太时赋予它的性质,即传播电磁波的能力,所有其他性质都没有留下来。我们试图发现以太的性质,却导致了困难和矛盾。有过这么多糟糕的经历,现在是彻底忘掉以太,再也不提它名字的时候了。我们说:空间具有传播波的物理属性,这样便省去了那个我们决定避开的词。

    当然,从我们的词汇中删去一个词是于事无补的。我们遇到的麻烦太大了,根本无法以这种方式来解决!

    我们现在把已经被实验充分验证的事实写下来,不再操心“以太”问题。

    1. 光在真空中的速度永远为标准值,与光源或光的接受者的运动无关。

    2. 在两个相对作匀速直线运动的坐标系中,所有自然定律都完全等同,无法区分出绝对的匀速直线运动。

    有许多实验确证了这两点,没有一个实验与其中任何一点相矛盾。第一点表达了光速的不变性,第二点则把为力学现象提出的伽利略相对性原理推广到一切自然现象。

    在力学中,我们已经看到:如果一个质点相对于一个坐标系有某个速度,那么它在相对于前一坐标系作匀速直线运动的另一个坐标系中的速度将会有所不同。这一结论源于简单的力学变换原理。这些原理是从我们的直觉(人相对于船和岸运动的例子)中直接得来的,似乎不会有什么错误。但这个变换定律与光速不变性是矛盾的。或者换句话说,我们需要补充第三条原理。

    3. 位置和速度是根据经典变换从一个惯性系变换到另一个惯性系的。

    矛盾是显而易见的。我们不能把(1)(2)(3)结合在一起。

    经典变换看起来极为自明和简单,似乎无法加以改变。我们已经尝试改变过(1)和(2),但与实验结果不一致。所有关于“以太”运动的理论都要求修改(1)和(2),但这毫无用处。我们再次意识到困难的严重性。我们需要一条新的线索,那就是接受(1)和(2)这两条基本假设,而放弃(3),尽管这看起来很奇怪。这条新线索始于对最基本、最原始概念的分析,我们这就来说明这种分析如何迫使我们改变了旧观点,从而消除了所有困难。

    7.时间、距离、相对论

    我们的新假设是:

    (1)在所有相对作匀速直线运动的坐标系中,光在真空中的速度都相同。

    (2)在所有相对作匀速直线运动的坐标系中,一切自然定律都相同。

    相对论就是以这两条假设为出发点的。从现在开始,我们不再使用经典变换了,因为我们知道它与这两条假设相矛盾。

    就像科学中向来所做的那样,这里需要把我们那些常常未经评判便加以接受的根深蒂固的偏见除去。既然我们已经看到,改变(1)和(2)会与实验相矛盾,我们就必须勇于承认它们是有效的,转而处理那个可能的弱点,即如何把位置和速度从一个坐标系变换到另一个坐标系。我们打算从(1)和(2)中推出结论,看看这两条假设与经典变换矛盾在何处,是怎样矛盾的,并且找到这些结论的物理意义。

    我们再次使用屋内屋外有两位观察者的运动房间的例子。从房间中央发出一个光信号,我们再问这两个人期待观察到什么。此时他们只接受上述两条原理,忘却了以前所说的关于光在介质中穿行的内容。他们回答如下:

    屋内的观察者:从房间中央发出的光信号将同时到达房间的各面墙,因为各面墙与光源距离相等,光沿各个方向传播的速度又相等。

    屋外的观察者:光在我坐标系中的速度与随房间运动的观察者的坐标系中完全一样。在我看来,光源是否在我的坐标系中运动并不重要,因为光源的运动不会影响光速。我看到光信号以标准速度朝各个方向行进。一面墙试图远离光信号,另一面墙则试图靠近光信号。因此,光信号碰到远离的墙要比碰到靠近的墙稍迟一些。如果房间的速度比光速小很多,那么这个时间差会极小,但光信号依然不会同时碰到这两面与运动方向垂直的相对的墙。

    比较了这两位观察者的预言之后,我们发现了一个非常惊人的结果,它与一些有着牢固基础的经典物理学概念明显相矛盾。在屋内的观察者看来,两束光到达两面墙这两个事件是同时的,而在屋外的观察者看来却并非同时。在经典物理学中,对于所有坐标系中的所有观察者,我们都只有一个钟,时间的流逝是一样的。时间以及像“同时”、“较早”、“较晚”这样的词都有一种绝对的意义,与任何坐标系都没有关系。在一个坐标系中同时的两个事件,在所有其他坐标系中也必定同时。

    (1)和(2)这两条假设,也就是相对论,迫使我们放弃这种观点。我们已经描述过,在一个坐标系中同时的两个事件在另一个坐标系中却不是同时的。我们的任务就是要理解这个结果,理解“在一个坐标系中同时的两个事件,在另一个坐标系中可能不是同时的”这句话的意思。

    “在一个坐标系中同时的两个事件”是什么意思呢?每个人从直觉上似乎都知道这句话的意思。但我们必须谨慎,力求给出严格的定义,因为我们知道过分重视直觉有多么危险。我们先来回答一个简单的问题。

    什么是钟?

    对于时间的流逝,原始的主观感受使我们能够排列出印象的次序,判定一件事发生得较早,另一件事发生得较晚。但要表明两个事件的时间间隔为10秒钟,就需要一个钟。钟的使用使时间概念成了客观的。只要能够精确重复任意多次,任何物理现象都可以当作一个钟来使用。若把这样一个事件的首尾时间间隔取作时间单位,那么重复这个物理过程就可以测量任何时间间隔。所有的钟,从最简单的沙漏到最精密的仪器,都是以这个想法为基础的。比如沙漏的时间单位就是沙从上面玻璃瓶流入下面玻璃瓶的时间间隔,倒转玻璃瓶则可以重复这个物理过程。

    两个离得很远的点上有两个完美的钟,所指示的时刻完全相同。如果不考虑作出验证,这句话总该是正确的。但它到底是什么意思呢?我们如何才能确信两个相距很远的钟总是指示完全相同的时刻呢?一个可能的办法是使用电视。需要注意的是,电视只是作为一个例子,对于我们的论证并不重要。我可以站在一个钟的旁边看着另一个钟在电视上的图像,然后可以判断它们是否同时指示着相同的时刻。但这并不是一个好的证明。电视图像是电磁波传递的,因此是以光速传播的。我们在电视上看到的图像是很短时间以前发出的,而我们在实际的钟上所看到的却是现在发生的。这个困难很容易避免。我必须在两个钟的中点处取这两个钟的电视图像,在这个中点上观察它们。于是,如果信号是同时发出的,则它们将同时到达我。如果从中点处观察的两个好钟总是指示相同的时刻,则它们就很适合指示在距离很远的两点发生的事件的时间。

    在力学中我们只用了一个钟。但这并不很方便,因为我们必须在这个钟附近来进行所有测量。若从远处看钟,比如通过电视去看,我们就必须牢记:我们现在看到的事情其实是以前发生的,一如我们是在日落发生以后8分钟才看到日落的。我们必须根据我们与钟的距离对时间读数作出修正。

    因此,只有一个钟是不方便的。但是现在,既然我们已经知道如何判断两个或更多个钟是否同时指示相同的时刻,是否走得同样快慢,我们完全可以在给定的坐标系中设想任意多个钟,其中每一个都能帮助我们确定在它附近发生的事件的时间。所有这些钟都相对于坐标系静止,它们都是“好”钟,都是同步的,就是说同时指示相同的时刻。

    关于钟的这种安排并没有什么特别奇怪的。我们现在使用很多个同步的钟,而不是只使用一个,因此很容易判断在给定的坐标系中,两个遥远的事件是否同时发生。两个事件发生时,如果它们附近同步的钟指示同样的时刻,则它们就是同时的。“两个相距遥远的事件,其中一个比另一个发生得更早”,这一说法现在有了明确的意义。所有这些都可以用静止在我们坐标系中的同步的钟来判断。

    这与经典物理学是一致的,也没有出现与经典变换相矛盾的地方。

    为了定义什么是同时的事件,我们借助于信号来使钟同步。我们在安排时,务必使信号以光速传播,光速在相对论中发挥着非常根本的作用。

    既然要讨论两个相对作匀速直线运动的坐标系的重要问题,我们就需要考察两根量杆,每一根都配有一些钟。两个坐标系相对作匀速直线运动,每一个坐标系中的观察者现在都有他自己的量杆和牢牢固定在量杆上的一组钟。

    在经典力学中讨论测量时,我们把一个钟用于所有坐标系。而在这里,每一个坐标系都有多个钟。这个差别并不重要。一个钟足够用了,但只要能精确同步,没有人会反对使用多个钟。

    我们正在接近一个关键点,表明经典变换在哪里违反了相对论。当两组钟相对作匀速直线运动时会发生什么?经典物理学家会回答说:什么也没有发生,它们仍然会走得一样快,我们既可以用静止的钟也可以用运动的钟来指示时间。按照经典物理学的看法,在一个坐标系中同时的两个事件,在任何其他坐标系中也是同时的。

    但这并非唯一可能的答案。我们同样可以设想运动的钟与静止的钟有不同的快慢。我们现在来讨论这种可能性,暂时不去判断钟在运动时是否真的会改变快慢。说“运动的钟会改变快慢”,这是什么意思呢?为简单起见,假定上面的坐标系只有一个钟,下面的坐标系则有许多个钟。所有钟的构造都相同,下面几个钟是同步的,亦即同时指示相同的时刻。在下面三幅图中,我们画出了作相对运动的两个坐标系的三个相继位置。在第一幅图中,我们约定上下几个钟的指针指向相同的位置。在第二幅图中我们看到,一段时间以后,两个坐标系有了相对位置。在下面的坐标系中,所有钟都指示着相同的时刻,而在上面的坐标系中,钟的快慢却改变了。之所以有这种快慢改变和时间差异,是因为这个钟正在相对于下面的坐标系运动。在第三幅图中,我们看到指针位置的差异随时间而增大了。

    静止在下面坐标系中的观察者会发现,运动的钟改变了快慢。如果这个钟相对于上面坐标系中静止的观察者而运动,当然也会发现同样的结果;在这种情况下,上面的坐标系中必须有许多个钟,而下面的坐标系中则只要一个。在两个作相对运动的坐标系中,自然定律必定是相同的。

    在经典力学中,我们默认运动的钟不会改变快慢。这似乎太过明显,几乎不值得提及。但如果真想认真,没有任何东西是太过明显的,我们应当对物理学中一直被视为理所当然的假设进行分析。

    不能因为某个假设只是跟经典物理学的假设不同就认为它是不合理的。我们完全可以设想运动的钟会改变快慢,只要这种变化定律对于所有惯性系都相同。

    再举一例。取一根米尺,这意味着只要它静止在某个坐标系中,它的长度就是1米。现在它作匀速直线运动,沿着代表坐标系的量杆滑动。它的长度看起来还是1米吗?我们必须预先知道如何确定它的长度。只要米尺静止,它的两端就会与坐标系上相隔1米的两个刻度重合。由此我们断定,静止米尺的长度是1米。而当这根尺子运动时,我们如何来测量它的长度呢?可以这样做:两位观察者在某一时刻同时拍快照,一个人拍运动尺子的始端,另一个人拍它的末端。由于照片是同时拍的,我们可以通过比较运动尺子的始端和末端与坐标系量杆重合的那两个刻度来确定它的长度。必须有两位观察者来留意在该坐标系的不同位置同时发生的事件。没有任何理由认为这样的测量结果会与米尺静止时相同。既然照片必须同时拍,而... -->>

本章未完,点击下一页继续阅读

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”