请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

全本小说网 www.qbshu.com,最快更新从一到无穷大最新章节!

    一、空间和时间的相互转变

    虽然显示空间和时间在四维世界中的统一性的数学努力并没有完全消除距离与时间延续之间的差别,但的确揭示出这两个概念之间具有高度的相似性,其程度要比在爱因斯坦之前的物理学中大得多。事实上,各个事件之间的空间距离和时间间隔,现在只能认为是这些事件之间基本的四维距离在空间轴和时间轴上的投影,从而四维坐标系的旋转可以使距离在部分程度上转变为时间的延续,或者使时间的延续在部分程度上转变为距离。不过,四维时空坐标系的旋转是什么意思呢?

    我们先来考虑图34a中由两个空间坐标所组成的坐标系,并且假定有两个固定点相距为L。将这一距离投影在坐标轴上,我们发现这两个点沿第一个轴的方向相距a英尺,沿第二个轴的方向相距b英尺。若把该坐标系旋转一个角度(图34b),则同样的距离在两个新坐标轴上的投影将与之前不同,新的值为a′和b′。然而根据毕达哥拉斯定理,两个投影的平方和的平方根在两种情况下是一样的,因为它对应着那两个点的实际距离,不会因为坐标系的旋转而改变。因此,

    。

    所以说,虽然投影的特殊值是偶然的,取决于坐标系的选择,但其平方和的平方根不会随着坐标系的旋转而变化。

    图34

    现在我们再来考虑一个轴对应着距离、一个轴对应着时间延续的坐标系。此时之前例子中的两个固定点就成了两个固定的事件,而在两个轴上的投影则分别表示它们的空间距离和时间间隔。如果这两个事件就是上一章所讨论的银行遭劫和飞机失事,我们便可以画一张图(图35a),它非常类似于表示两个空间坐标的图34a。那么,怎样才能旋转坐标轴呢?答案非常出乎意料,甚至令人困惑:要想旋转时空坐标系,请上汽车。

    假定我们真的在7月28日那个多事之晨坐上了一辆沿第五大道行驶的公共汽车。从自我中心的观点来看,此时我们最关心被劫的银行和飞机失事地点离我们的汽车有多远,倘若距离决定了我们能否看到这些事件。

    图35

    图35a画出了汽车世界线的相继位置以及银行遭劫、飞机失事这两个事件。你会立刻注意到,从汽车上观察到的距离不同于比如站在街角的交警所记录下来的距离。由于汽车正在沿大道行驶,比如说速度是每三分钟过一个街区(这在拥挤的纽约交通中并非罕见),所以从汽车上看,这两个事件的空间距离就变小了。事实上,由于上午9点21分汽车正在穿过五十二街,所以距离此时遭劫的银行有两个街区之远。而上午9点36分飞机失事时,汽车在四十七街,距离失事地点有14个街区之远。如此测量相对于汽车的距离,我们会断言,银行遭劫与飞机失事的空间距离为14-2=12个街区,而不是相对于城市建筑所测得的50-34=16个街区。再看看图35a,我们看到,从汽车上记录的距离不能像以前那样从纵轴(交警的世界线)来计算,而应从表示汽车世界线的那条斜线来计算。因此,现在起着新时间轴作用的是后一条线。

    把方才讨论的“零七碎八”总结一下就是:要想绘制从运动物体上观察到的事件的时空图,必须把时间轴旋转一个角度(角度的大小取决于运动物体的速度),而空间轴保持不动。

    虽然从经典物理学和所谓“常识”的观点来看,这种说法是无可置疑的真理,但它却和我们关于四维时空世界的新观念直接相左。事实上,既然时间被视为独立的第四个坐标,时间轴就必须总是垂直于三个空间轴,无论我们坐在公共汽车上、电车上还是人行道上!

    在这一点上,我们只能两种思路选其一:要么保留我们习惯性的时间空间观念,不再对统一的时空几何学作任何进一步思考;要么就必须打破“常识”的旧观念,认为在我们的时空图中,空间轴必须和时间轴一起旋转,从而二者总是保持垂直(图35b)。

    然而,正如旋转时间轴在物理上意味着,两个事件的空间距离在从运动物体上观察时会有不同的值(在前面那个例子中分别为12个街区和16个街区),旋转空间轴也意味着,从运动物体上观察到的两个事件的时间间隔不同于从地面上某一固定点观察到的时间间隔。于是,如果市政厅的时钟显示银行遭劫与飞机失事相隔15分钟,那么公共汽车上的乘客的手表所记录的时间间隔将有所不同。这并非因为机械装置的不完美导致两块表走得快慢不一致,而是因为在以不同速度运动的物体上,时间本身的流逝快慢有所不同,记录时间的实际机械装置也相应地变慢了。不过对于公共汽车的低速而言,这种变慢微乎其微,几乎觉察不到。(本章会详细讨论这个现象。)

    再举一个例子。设想一个人在一列行进的火车餐车上吃饭。在餐车的服务员看来,他在同一个地方(第三张桌子靠窗)吃餐前开胃品和餐后甜点。但在两个站在铁轨的固定点透过窗户朝车内张望的扳道工看来(一个正好看到他在吃餐前开胃品,另一个正好看到他在吃餐后甜点),这两个事件发生在数英里之遥。于是我们可以说:在一位观察者看来发生在同一地点和不同时间的两个事件,在处于不同运动状态的另一位观察者看来却发生在不同的地点。

    从我们所期望的时空等价的观点出发,把上面这句话中的“地点”和“时间”这两个词互换,该句就成了:在一位观察者看来发生在同一时间和不同地点的两个事件,在处于不同运动状态的另一位观察者看来却发生在不同的时间。

    如果将其用于我们餐车的例子中,我们会期待那位服务员言之凿凿地声称,坐在餐车两头的两位乘客餐后同时点烟,而在铁轨上透过窗户朝车内张望的扳道工却会坚持说,两人点烟的时间有先有后。

    因此,在一位观察者看来同时发生的两个事件,在另一位观察者看来却相隔一段时间。

    这些便是四维几何学的必然推论,在四维几何学中,时间和空间仅仅是一段固定不变的四维距离在相应轴上的投影。

    二、以太风和天狼星之旅

    现在我们要问,愿意使用这种四维几何学的语言,是否证明在我们旧的感觉良好的时空观念中引入这些革命性变化是正当的?

    如果回答是肯定的,我们便质疑了整个经典物理学体系,经典物理学的基础是伟大的牛顿在两个半世纪以前对空间和时间的定义:“绝对空间就其本性而言与任何外界的事物无关,永远不变和不动”,“绝对的、真实的数学时间就其本性而言均匀地流逝着,与任何外界的事物无关。”在写这些话的时候,牛顿肯定不认为自己是在讲什么新的或引起争议的东西;他不过是在以精确的语言把人们常识中的空间和时间概念表达出来罢了。事实上,人们对这些经典时空概念的正确性是如此坚信,以至于它们常被哲学家们视为先验的。从来没有一个科学家(更不用说外行)认为它们有可能错误,从而需要重新考察和表述。那么,我们现在为什么要重新考虑这个问题呢?

    回答是:之所以要抛弃经典的时空观念并把时间和空间统一在一幅四维图景中,并非出于爱因斯坦纯粹审美的愿望,亦非其无法遏止的数学冲动使然,而是因为实验研究中经常会出现一些难以对付的事实,与独立的时间和空间的经典图景不符。

    经典物理学这座似乎永世长存的美丽城堡的基础受到的第一次冲击源于1887年美国物理学家迈克耳孙(Albert Abraham Michelson)所做的一个看起来朴实无华的实验,它几乎震撼了这精巧建筑物的每一块砖石,使其墙壁摇摇欲坠,就像耶利哥的城墙在约书亚的号角声中倒塌一样。迈克耳孙实验的想法非常简单,它基于这样一种物理图像:光在通过所谓“传递光的以太”(一种均匀充满宇宙空间以及所有物体原子之间的假想物质)时,会表现出某种波动性。

    将一块石头丢进池塘,水波会沿四面八方传播。振动的音叉发出的声音以波的形式向四面传播,任何明亮物体发出的光也是如此。然而,水面上的波纹清楚地显示了水微粒的运动,声波也已知是声音所穿过的空气或其他物质的振动,但我们却找不到任何传递光波的物质媒介。事实上,(与声音相比)光能在空间中如此轻易地传播,空间似乎是完全空虚的!

    然而,倘若没有什么东西在振动,又谈论某种振动的东西,这似乎太不合逻辑。于是,物理学家不得不引入“传递光的以太”这样一个新概念,以便在试图解释光的传播时为“振动”这个动词提供一个实体性的主词。从纯语法的角度来看,任何动词都必须有一个主词,“传递光的以太”的存在性不可能被否认。但————这个“但”要大声强调————语法规则并没有规定也不可能规定,这个为了正确造句而不得不引入的主词具有什么物理性质!

    如果我们把“光以太”定义为传播光波的东西,那么说光波在光以太中传播倒是千真万确的,但这是一句完全无谓的重言式。查明这种光以太究竟是什么以及具有什么样的物理性质,乃是完全不同的问题。这里,任何语法都帮不了我们,答案只能来自物理学。

    在接下来的讨论中我们会看到,19世纪物理学所犯的最大错误在于假定这种光以太具有类似于我们所熟知的日常物体的那些性质。人们习惯于谈论光以太的流动性、刚性、各种弹性甚至是内摩擦。一方面,光以太在传递光波时表现得像一种振动的固体;28另一方面,它又显示出完全的流动性,对天体的运动毫无阻碍。这样一来,光以太就被类比于封蜡一样的物质:人们知道,封蜡等物质非常坚硬,在迅速的机械撞击之下很容易碎裂;但若静置足够长的时间,又会在自身重量的作用下像蜂蜜一样流动。根据这种类比,旧物理学设想光以太充满了整个宇宙空间,对于与光的传播有关的高速扰动来说表现得像坚硬的固体;而对于在其中穿行、速度比光慢几千倍的行星和恒星来说,却又表现得像液体。

    这样一种或可称为拟人化的观点试图把我们所熟知的普通物质的性质归于一种除名称以外一无所有的物质,它从一开始就遭遇了巨大的失败。人们虽然作了许多努力,但仍然无法对光波的这种神秘传递者给出合理的力学解释。

    根据我们目前拥有的知识,很容易看出这种努力错在何处。事实上我们知道,普通物质的所有机械性质都可以追溯到构成物质的原子之间的相互作用。例如,水的高度流动性是由于水分子之间可以作摩擦很小的滑动;橡胶的弹性是由于橡胶分子很容易变形;金刚石的坚硬则是由于构成金刚石晶体的碳原子被紧紧地束缚在一种刚性点阵结构中。因此,各种物质所共有的一切机械性质都是缘于它们的原子结构,但这条规则在运用于像光以太这样被认为绝对连续的物质上时是毫无意义的。

    光以太是一种特殊类型的物质,它与我们熟知的原子嵌镶结构或通常所说的物质毫无相似性。我们可以把光以太称为一种“物质”(这仅仅因为它充当着“振动”这个动词在语法上的主词),但也可以称之为“空间”。不过要记住,正如我们之前已经看到,之后还会看到的,空间可能具有某种形态特征或结构特征,它比欧几里得几何学中的空间观念复杂得多。事实上在现代物理学中,“光以太”(除去它那些据称的力学性质)和“物理空间”被认为是同义词。

    不过我们已经偏离得太远,竟然开始对“光以太”一词进行哲学分析了。现在我们还是回到迈克耳孙实验的话题上来吧。如前所述,这个实验的想法是非常简单的:如果光是在以太中穿行的波,那么地面上的仪器所记录的光速将因为地球在空间中运动而受到影响。站在沿轨道绕日运行的地球上,我们会经验到一股“以太风”,就像即使天晴无风,人站在快速行驶的船的甲板上也会感到有风扑面而来一样。当然,我们是感觉不到“以太风”的,因为它已被假定能够毫无困难地穿透到我们的身体原子之间。但是通过测量沿不同方向相对于我们运动的光速,就应该能够探测到它的存在。众所周知,顺风传播的声音速度比逆风传播的大,因此,顺着以太风传播的光的速度似乎也应当大于逆着以太风传播的光的速度。

    做过如此推理之后,迈克耳孙着手设计了一套仪器,能够记录沿各个方向传播的光速的差别。当然,要想做到这一点,最简单的办法是采用前面提到的斐索的仪器(图31c),把它转到不同的方向进行一系列测量。但这样做并不很现实,因为这要求每次测量都有很高的精度。事实上,由于我们所预期的速度差(等于地球的速度)只有光速的万分之一左右,所以必须以极高的准确度来进行每一次测量。

    如果你有两根长度大致相同的棒,并想知道其长度究竟相差多少,那么最简单的办法就是把两根棒的一端对齐,在另一端量出差异。这就是所谓的“零点法”。

    迈克耳孙的仪器草图如图36所示,它便是利用零点法来比较光沿两个相互垂直的方向的速度差的。

    图36

    这套仪器的中心部件是一个玻璃片B,上面镀着一层薄薄的半透明的银,可以使入射光的一半发生反射,并让其余的一半透过。于是,光源A发出的光束被B分成两个相互垂直的部分,这两束光分别被与中心玻璃片等距的镜子C和D反射回B。从D返回的光有一部分会穿过银膜,从C返回的光有一部分会被银膜反射,在仪器入口处被分开的这两束光在进入观察者眼睛时会重新结合起来。根据大家所熟知的一条光学定律,这两束光会彼此干涉,形成一套肉眼可见的明暗条纹。如果距离BD与BC相等,两束光将会同时返回中心部件,亮条纹会位于图像中心。如果稍微改变距离,使一束光有所延迟,则条纹就会向左或向右移动。

    由于该仪器位于地球表面,而地球正快速穿过空间,所以我们必然会预期,以太风正以地球运动的速度吹过地球。例如,假定这股风沿着从C到B的方向刮去(如图36所示),我们来看看它会给赶往相会地点的两束光的速度造成什么差别。请记住,其中一束光是先逆风后顺风,另一束光则是在风中来回横穿。那么哪一束光先回来呢?

    设想河上有一艘汽船逆流而上从1号码头行驶到2号码头,然后再顺流驶回1号码头。水流在前一半航程起阻碍作用,在归程则起辅助作用。你也许认为这两种作用会彼此抵消吧?但事实并非如此。为了理解这一点,设想这艘汽船以水流的速度行驶。在这种情况下,它永远到不了2号码头!不难看到,在所有情况下,水流的存在将使整个航行的时间增加一个因子:

    ,

    其中V是船速,v是水流速度。29例如,倘若船速是水流速度的10倍,则整个航行的时间为:

    ,

    也就是说,比在静水中的时间长百分之一。

    同样,我们也能计算出在河水中来回横渡所耽搁的时间。这里的耽搁是因为要想从1号码头驶到3号码头,船的行驶方向须稍稍倾斜,以补偿在水流中的漂移。在这种情况下,耽搁的时间要少一些,其因子为:

    对于上面那个例子来说,时间只增加了0.5%。这个公式很容易证明,有兴趣的读者可以自行验证。现在,将河流替换成流动的以太,将船替换成在其中传播的光波,便可得到迈克耳孙的实验方案。现在,光束从B到C再返回B的时间增加的因子为:

    ,

    其中c是光在以太中的传播速度。而光束从B到D再返回B的时间增加的因子则为:

    。

    由于以太风的速度等于地球运动的速度,为每秒30公里,光的速度为每秒30万公里,因此这两束光将分别延迟0.01%和0.005%。因此,借助于迈克耳孙的仪器,光束逆着以太风行进和顺着以太风行进的速度差异是很容易观察到的。

    然而,在作这项实验时,迈克耳孙竟然未看到干涉条纹有丝毫移动,可以想见他当时是何等惊讶!

    显然,无论光是沿着以太风传播,还是横穿以太风,以太风对光速都没有影响。

    这个事实太让人惊讶,迈克耳孙起初还不敢相信,但一次次地精心重复实验无可置疑地表明,他最初得到的结果虽然令人惊讶,却是正确的。

    对这个出乎意料的结果,唯一可能的解释似乎就是大胆假设,迈克耳孙那张安装镜子的巨大石桌沿着地球穿过空间的方向有轻微的收缩(所谓的菲茨杰拉德收缩30)。事实上,如果距离BC收缩了一个因子

    而距离BD保持不变,那么两束光的耽搁时间就变得相同了,因此便不会出现所预期的干涉条纹移动。

    然而,迈克耳孙那张桌子有可能收缩,这话说起来容易,理解起来难。的确,我们会预料在有阻滞介质中运动的物体会有某种收缩,比如由于船尾螺旋桨的驱动力和船头水的阻力,在湖上行驶的汽船会有些微的压缩。不过,这种机械压缩的程度依赖于造船材料的抗拉强度,钢制船体的压缩程度会比木制船体小一些。然而,导致迈克耳孙实验中否定结果的收缩只依赖于运动速度,而丝毫不依赖于所涉材料的抗拉强度。倘若安装镜子的那张桌子并非由石头制成,而是由铸铁、木头或其他任何材料制成的,收缩的量也将完全一样。因此很显然,我们这里讨论的是一种普遍效应,它使所有运动物体都以完全相同的程度发生收缩。或者按照爱因斯坦教授1904年对这种现象的描述,我们这里讨论的是空间本身的收缩。所有以相同速度运动的物体都会以相同的方式收缩,这仅仅是因为它们都被嵌在同一个收缩的空间中。

    关于空间的性质,我们在前面两章已经谈了不少,以使上述陈述听起来显得合理。为把情况说得更清楚一些,可以设想空间具有弹性胶冻的某些性质,其中留有不同物体边界的痕迹;当空间由于受到挤压、拉伸或扭转而变形时,所有嵌在其中的物体的形状会自动以同一种方式发生改变。这些因空间变形而导致的变形不同于各种外力所导致的个体变形,外力在变形的物体内部产生了应力和应变。图37显示的二维情况也许有助于解释这种重要的区别。
<... -->>

本章未完,点击下一页继续阅读

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”